First Midterm: Answers

MA441: Algebraic Structures I

12 October 2003

1) Definitions
1. Define what it means for a subset of a group to be a subgroup.

A subset H of G that is itself a group under the operation of G is a subgroup.
2. Define what it means for a group to be cyclic.

A group G is cyclic if there is an element a such that G is generated by a, that is, $G=\langle a\rangle$. (Alternatively, G is cyclic if there is an element a with the same order as G.)
2) Give an example of

1. a nonabelian group of order 10 .

The dihedral group D_{5}.
2. a group with exactly five subgroups (including the trivial subgroup and itself). List the subgroups.

The additive group of integers modulo 16 , denoted $\mathbb{Z} / 16 \mathbb{Z}$ or Z_{16}. The subgroups are $\langle 1\rangle,\langle 2\rangle,\langle 4\rangle,\langle 8\rangle,\langle 0\rangle=\langle 16\rangle$.
3) Fill in the blanks.

1. The order of 3 in $U(11)$ is 5 .
2. The order of the group $U(15)$, which equals $\phi(15)$, is 8 .
$U(15)=\{1,2,4,7,8,11,13,14\}$.
3. If $x \in G, x \neq e$, and $x^{18}=x^{33}=e$, then $|x|=3$.

The GCD of 18 and 33 is 3 .
4. In the group D_{4}, let R denote rotation by 90 degrees counterclockwise, and let F denote a flip about the vertical. Written in the form $R^{i} F^{j}$, the element $F R$ equals $R^{3} F$.
5. A complete list of all generators of $\mathbb{Z} / 10 \mathbb{Z}$ is $\{1,3,7,9\}$.
4) Euclidean algorithm

1. Use the Euclidean Algorithm to express $\operatorname{gcd}(57,5)$ as an integer linear combination of 57 and 5 . Show your work.
We calculate the GCD by the Euclidean Algorithm:

$$
\begin{aligned}
57 & =11 \cdot 5+2 \\
5 & =2 \cdot 2+1 \\
1 & =1 \cdot 5-2 \cdot 2 \\
2 & =57-11 \cdot 5 \\
1 & =1 \cdot 5-2(57-11 \cdot 5) \\
& =23 \cdot 5-2 \cdot 57
\end{aligned}
$$

2. Find the multiplicative inverse of 5 in $U(57)$. Show your work.

Since $23 \cdot 5-2 \cdot 57=1$, we have $23 \cdot 5 \equiv 1(\bmod 57)$, therefore $23=5^{-1}$ in $U(57)$.
5) Permutations

Consider permutations of the set $\{1,2,3,4,5,6,7\}$.

1. Let

$$
\alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 7 & 4 & 2 & 6 & 5 & 1
\end{array}\right), \beta=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 5 & 7 & 3 & 1 & 4 & 6
\end{array}\right) .
$$

Write α and β in cycle notation.

$$
\alpha=(13427)(56), \beta=(125)(3764) .
$$

2. Compute the composition $\alpha \beta$ and write it in cycle notation. Write α^{-1} in cycle notation. (Note: we compose permutations from left to right, so $(123)(12)=(23), \operatorname{not}(13)$.)

$$
\alpha \beta=(1726)(45), \alpha^{-1}=(17243)(56) .
$$

The next two questions ask for proofs. Be sure to write carefully and explain your arguments with clear and coherent sentences.
6) Let a be an element of a group G. Define $\langle a\rangle$, the cyclic subgroup generated by a, and prove that it is a subgroup of G.

The cyclic group generated by a, denoted $\langle a\rangle$, is $\left\{a^{n}: \forall n \in \mathbb{Z}\right\}$.
To show that $\langle a\rangle$ is a subgroup of G, we can apply the Two-step Subgroup Test. First, we show that that $\langle a\rangle$ is closed under the operation of the group. Let a^{m} and a^{n} be two arbitrary elements of $\langle a\rangle$. Their composition a^{m+n} is again in $\langle a\rangle$ since $m+n$ is an integer. Next, we show that $\langle a\rangle$ is closed under inversion, that is, for any element in $\langle a\rangle$, its inverse is also in $\langle a\rangle$. Let a^{n} be any element of $\langle a\rangle$. Then its inverse a^{-n} is also in $\langle a\rangle$ because $-n$ is an integer.

You could also apply the One-Step Subgroup test by noting that $a^{n}\left(a^{m}\right)^{-1}$ in again in $\langle a\rangle$ because $n-m$ is an integer.
7) Let G be a group. Show that

$$
Z(G)=\bigcap_{a \in G} C(a)
$$

that is, the center of a group is the intersection of the centralizers of every element in the group.

Note that this is Gallian's Exercise 15 of Chapter 3 (page 68), assigned in Homework 2.

The center $Z(G)$ is $\{x \in G: \forall a \in G, x a=a x\}$, that is, the elements of G that commute with all elements. The center $C(a)$ is $\{x \in G: x a=a x\}$, that is the elements of G that commute with a.

Suppose x is any element in the center $Z(G)$. Then for any a in G, $x a=a x$. This implies that $x \in C(a)$. Since this is true for any $a \in G, x$ is in $C(a)$ for every $a \in G$, hence is in their intersection. This shows that

$$
Z(G) \subseteq \bigcap_{a \in G} C(a)
$$

Conversely, suppose x is in $\bigcap_{a \in G} C(a)$. Then for any $a \in G$, we know $x a=a x$. This means that x commutes with every element of G, so $x \in Z(G)$. This shows that

$$
Z(G) \supseteq \bigcap_{a \in G} C(a) .
$$

You could also prove the result more concisely by noting that all the steps in the above argument are reversible. Choose any $x \in Z(G)$. Now $x \in Z(G)$ iff $x a=a x$ for any $a \in G$, iff for any $a \in G, x \in C(a)$, iff $x \in \bigcap_{a \in G} C(a)$.

