
Answers to Final Exam

MA441: Algebraic Structures I

20 December 2003

1) Definitions (20 points)

1. Given a subgroup H C G, define the quotient group G/H. (Describe
the set and the group operation.)

The quotient group is the set of left (or right) cosets {aH|a ∈ G} with
group operation (aH)(bH) = (ab)H.

2. Given a permutation group G < Sn acting on the set {1, 2, . . . , n},
define the stabilizer StabG(i).

StabG(i) = {φ ∈ G|φ(i) = i}

3. Given an element a ∈ G, define the centralizer C(a).

C(a) = {g ∈ G|ag = ga}

4. Given a ∈ G, define the conjugacy class cl(a).

cl(a) = {gag−1|g ∈ G}

2) Fill in the blanks or answer True/False (five from this list)

1. True or False: (1234)(4567) ∈ A7. True

A 4-cycle is odd (a product of three 2-cycles), and two odds make an
even.

2. True or False: 〈(14)〉 is a normal subgroup of S4. False

For example, (12)(14)(12) = (1)(24), which is not contained in 〈(14)〉.
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3. True or False: If 7 divides |G|, then G has an element of order 7. True

This follows from Cauchy’s Theorem.

4. True or False: For every positive integer n, Aut(Zn) ≈ U(n). True

This is Theorem 6.5.

5. True or False: Let G be a cyclic group of order n. If k|n, then there is
an H < G such that H has order k. True

This follows from the Fundamental Theorem of Cyclic Groups (Theo-
rem 4.3).

3) Let H be a nonempty finite subset of a group G. Prove that H is a
subgroup of G if H is closed under the operation of G.

This is Theorem 3.3, the Finite Subgroup Test. One need only prove that
any element a ∈ H has an inverse. If a = e, then a is its own inverse. Assume
a 6= e. Consider 〈a〉. Since H is finite, by the Pigeonhole Principle, there are
i, j such that ai = aj. We may assume that 0 < i < j. Then aj−i = e and
a · aj−i−1 = e. Since a 6= e, j − i− 1 > 0. Therefore a−1 = aj−i−1.

4) Use Lagrange’s Theorem to prove Fermat’s Little Theorem: for every
integer a and every prime p, ap ≡ a (mod p).

This is Corollary 5 to Lagrange’s Theorem, Theorem 7.1. Apply La-
grange’s Theorem to U(p), which has order p−1. Because ap−1 ≡ 1 (mod p),
we multiply both sides by a to get ap ≡ a (mod p).

5) Cosets

1. Given a subgroup H < G and any a, b ∈ G, prove that either aH = bH
or aH ∩ bH = ∅, i.e., aH and bH are disjoint.

This is from the Lemma on page 135 of Chapter 7.

Suppose x is in both aH and bH. Then we can write x = ah1 = bh2

for some h1, h2 ∈ H. Therefore a = bh2h
−1
1 and b = ah1h

−1
2 . So

aH = bh2h
−1
1 H ⊆ bH and conversely bH = ah1h

−1
2 H ⊆ aH. Therefore

aH = bH.

Alternatively, one could cite the property that aH = H iff a ∈ H.
Then aH = b(h2h

−1
1 H) = bH, since h2h

−1
1 H = H.
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2. Given a subgroup H < G and any a ∈ G, prove that aH < G iff a ∈ H.

If a ∈ H, then by the first part, aH = H (a ∈ aH ∩ H) so aH < G.
If aH < G, then e ∈ aH. Since e ∈ H, aH = H. Alternatively, since
e ∈ aH, we can write e = aa−1. Since a−1 ∈ H, a ∈ H.

6) Homomorphisms. Let φ : G1 → G2 be a homomorphism, and let H < G1.

1. Prove that φ(H) is a subgroup of G2.

This is Theorem 10.2, part 1.

2. Prove that if H CG1 then φ(H) C φ(G1).

This is Theorem 10.2, part 4.

7) First Isomorphism Theorem. Let φ : G → H be a homomorphism of
groups and let K = Kerφ. Let ψ : G/K → H be the correspondence that
sends gK 7→ φ(g).

1. Prove that if K = {e}, then φ is one-to-one.

This follows from Theorem 10.2, part 5. Alternatively, you can argue
directly that if φ(x) = φ(y), then φ(xy−1) = e, so xy−1 ∈ K. Since K
is assumed to be trivial, xy−1 = e and x = y.

2. Show that ψ is well-defined. Prove that for any x, y ∈ G such that
xK = yK, we have ψ(xK) = ψ(yK).

This is part of Theorem 10.3, the First Isomorphism Theorem. If
ψ(xK) = ψ(yK), then φ(x) = φ(y), by the definition of ψ. Follow-
ing the argument in the previous part, xy−1 ∈ K, so xK = yK.

8) Euclidean Algorithm

1. Use the Euclidean Algorithm to express gcd(13, 28) as an integer linear
combination of 13 and 28. Show all work.

2. Find the inverse of 13 in U(28).
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We calculate

28 = 2 · 13 + 2

13 = 6 · 2 + 1

1 = 13− 6 · 2
2 = 28− 2 · 13

1 = 13− 6(28− 2 · 13)

= 13 · 13− 6 · 28.

Reducing the last equation modulo 28, we see that 13 is its own inverse in
U(28).

9) Prove that if |a| = k, then 〈a〉 = {e, a, a2, . . . , ak−1}.
This is Theorem 4.1. Note that 〈a〉 = {an|n ∈ Z}. The key idea here is

to apply the Division Algorithm. For any n, we can divide by k and take the
remainder to get n = q · k + r, where 0 ≤ r < k. Then an = ar. (For n < 0,
the q will be negative, and this still works.)

10) Let G be the group {a + b
√

2 | a, b ∈ Q} under addition, and let H be
the group

H =

{[
a 2b
b a

] ∣∣∣∣ a, b ∈ Q
}

under addition.
Show that G and H are isomorphic under addition.

This was problem 6.24 in Homework Assignment 9.
Let φ be the map such that

φ(a+ b
√

2) =

(
a 2b
b a

)
.

The map φ is one-to-one because if φ(a+ b
√

2) = φ(c+ d
√

2), then(
a 2b
b a

)
=

(
c 2d
d c

)
,

then the corresponding entries are equal, so a = c and b = d.
The map φ is onto because for any a, b, the definition of φ above means

a+ b
√

2 is a preimage for (
a 2b
b a

)
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under φ.
To show the homomorphism property, observe that(

a 2b
b a

)
+

(
c 2d
d c

)
=

(
a+ c 2(b+ d)
b+ d a+ c

)
,

So therefore

φ((a+b
√

2)+(c+d
√

2)) = φ((a+c)+(b+d)
√

2) = φ(a+b
√

2)+φ(c+d
√

2).

11) Suppose that |x| = n. Find a necessary and sufficient condition on r and
s such that 〈xr〉 ⊆ 〈xs〉. Justify your answer.

This was problem 4.60 in Homework Assignment 7.
The proof we followed in the homework was to apply Theorem 4.2 to get

〈xr〉 = 〈xgcd(r,n)〉, 〈xs〉 = 〈xgcd(s,n)〉,

and then deduce the divisibility condition gcd(s, n) divides gcd(r, n).
Alternatively, one could argue that by the Fundamental Theorem of

Cyclic Groups, 〈xr〉 ⊆ 〈xs〉 iff |〈xr〉| divides |〈xs〉|. Since 〈xs〉 is a cyclic
group, there is exactly one subgroup for each order dividing |〈xs〉|.

12) (for 10 points of extra credit) Prove Lagrange’s Theorem. You may cite
basic properties of cosets, such as those listed in Gallian’s Lemma in Chapter
7, if you state them accurately.

Please refer to the proof on page 137 of Gallian. It suffices to note that
G can be partitioned by its cosets, that all cosets have the same size, and
that therefore the order of G is an even multiple of the order of a coset.
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