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Review from Lecture 10:

Permutations:

• Cycle notation

• Composition

• Inversion
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Theorem 4.4:

If d is a positive divisor of n, the number of

elements of order d in a cyclic group of order

n is φ(d).

Corollary:

In a finite group the number of elements of

order d is divisible by φ(d).
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The Lattice of Subgrooups

We can represent all subgroups of a group by

a diagram that shows how the subgroups are

contained in each other.

Given a group G, we begin by writing G at

the top of the diagram and 〈e〉 at the bottom.

Given two subgroups H, K < G, if H < K, then

we write H below K and connect them.

If you know some graph theory, this lattice is

a directed acyclic graph.
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There is no unique way to write this graph on

a sheet of paper. What is important are the

containment relationships that it encodes.

Examples: Z/30Z, Z/12Z, U(8)

Subgroup lattices are a helpful way to visualize

the structure of groups.
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Chapter 5: Permutation Groups

Definition:

A permutation of a set A is a function from

A to A that is both one-to-one and onto. A

permutation group of a set A is a set of

permutations of A that forms a group under

function composition.

We will consider only permutations of finite

sets.

Definition:

Let A = {1,2, . . . , n}. The set of all permuta-

tions of A is called the symmetric group of

degree n (or the symmetric group on n letters)

and is denoted Sn.
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There are n! elements of Sn, i.e., |Sn| = n!.

We can count the permutations on n letters

by counting the possible images of each letter.

The first letter can be mapped to any letter, so

there are n possibilities. The second letter can

be mapped to any letter except for the image

of the first, so there are n−1 possibilities. We

can continue this until we are down to the last

letter, which has only one place left where it

can be mapped to. So the number of possible

permutations is

n · (n − 1) · (n − 2) · · · · · 2 · 1 = n!
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Theorem 5.1: Products of Disjoint Cycles

Every permutation of a finite set can be writ-

ten as a cycle or as a product of disjoint cycles.

Idea of Proof:

Pick an element of the set and find its cycle

under the permutation. The cycle has to be

finite since the set is finite. If there are any

elements not in that cycle, then pick one and

find its cycle. It can’t overlap with the first

cycle because then it would be contained in

the first cycle.
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Proof:

Let α be a permutation on A = {1,2, . . . , n}.
To write α in disjoint cycle form, we start by

choosing any member of A, say a1, and let

a2 = a1α, a3 = a2α = a1α2,

and so on, until we arrive at a1 = a1αm, for

some m.

Claim: Such an m exists.

We know such an m exists, because this se-

quence of images is finite. Because A is finite,

by the Pigeonhole Principle, there must be two

images that coincide, that is, a1αi = a1αj, for

some i, j with i < j. We take m = j − i. Then

a1 = a1αm.
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We can write the permutation α as

α = (a1a2 . . . am) · · · ,

where the three dots at the end indicate that

there may be other elements of A not accounted

for.

If there are no other elements outside the {ai},
then we are done. Otherwise, we choose a b1
outside this set and find its cycle (b1b2 . . . bk),

for some k, as before.
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This cycle must have no elements in common

with the first cycle. If there were an overlap,

say a1αi = b1αj, for some i, j with i ≤ j, then

we would have

a1αj−i = b1,

and then b1 would be contained in the first

cycle of the {ai}.

This contradicts how we chose b1.

We can continue this process until every ele-

ment of A has been included in a cycle. Then

we can write α in the form

α = (a1a2 . . . am)(b1b2 . . . bk) · · · (c1c2 . . . cs).
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Theorem 5.2: Disjoint Cycles Commute

If the pair of cycles α = (a1a2 . . . am) and

β = (b1b2 . . . bn) have no entries in common,

then αβ = βα.

Proof:

Let S be written

S = {a1, a2, . . . , am, b1, b2, . . . , bn, c1, . . . ck}.

Note that α acts only on the {ai}, and β acts

only on the {bi}.
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For any element x ∈ S, we note

• If x 6∈ {ai}, then xα = x.

Then (xα)β = xβ = (xβ)α.

• If x 6∈ {bi}, then xβ = x.

Then (xα)β = xα = (xβ)α.

(The case x ∈ {ci} is subsumed by the above

two cases, in fact, xαβ = x = xβα.)

13



Theorem 5.3: The Order of a Permuta-

tion

The order of a permutation of a finite set writ-

ten in disjoint cycle form is the least common

multiple of the lengths of the cycles.

Idea of Proof:

The disjoint cycles commute with each other.

Therefore if we have a permutation α written

as

α = (a1a2 . . . am)(b1b2 . . . bk) · · · (c1c2 . . . cs),

then

αn = (a1a2 . . . am)n(b1b2 . . . bk)
n · · · (c1c2 . . . cs)

n.

When n is the LCM of m, k, s, and the other

cycle lengths, that is the lowest power of α

that equals the identity.
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Homework Assignment 6

Reading Assignment:

Chapter 5: pages 93–106

Homework Problems:

Chapter 4: 9, 29, 33, 34, 46, 52

Chapter 5: 2, 3, 8, 11, 12, 20
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