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Review from Lecture 13:

We looked at how the dihedral group D4 can
be viewed as

1. the symmetries of a square,

2. a permutation group, and

3. a matrix group.

This is an example of an isomorphism
between groups.



Example 1:
The group (R, +), the real numbers under ad-
dition, is isomorphic to the group (RT,.), the

positive real numbers under multiplication.

The isomorphism mapping is the exponential
map ¢(x) = 27.

Example 2:
Any infinite cyclic group is isomorphic to Z.

The finite cyclic group {(a) generated by a of
order n is isomorphic to Z/nZ.

The isomorphism mapping sends
ak € (a) to k € Z/nZ.



(Non) Example 3:

The mapping ¢(z) = 23 from (R,+) to itself
IS not an isomorphism because the homomor-
phism property is not satisfied.

(Non)Example 5:

U(10) is not isomorphic to U(12).

Although both groups have order four, U(10)
is cyclic and therefore has an element of or-

der four. On the other hand, all non-identity
elements of U(12) have order 2.



Definition:

An isomorphism ¢ from a group GG to a group
G- is a one-to-one mapping (or function) from
(G1 onto G» that preserves the group operation.
That is, for every a,b € G,

¢(ab) = ¢(a)P(b).

If there is an isomorphism from Gq1 onto Gy,
then we say that G1 and G5 are isomorphic
and write G1 =~ G» (or G1 = G»).



There are four steps to show that two groups
are isomorphic:

Step 1: Mapping
Define a function from G71 to G» that is a can-
didate for an isomorphism.

Step 2: One-to-one

Prove that ¢ is one-to-one (injective). That
is, for any a,b € GG, show that ¢(a) = ¢(b) in
Go implies a = b.

Step 3: Onto
Prove that ¢ is onto (surjective). That is, for
any g»> € Go, there is a g1 € G71 such that

¢(g91) = go.



Step 4: Preserves Operation
Prove that ¢ preserves group operations (i.e.,
¢ is operation-preserving). That is, show that

d(ab) = ¢(a)p(b) for any a,b € G1.

Definition:
A mapping from Gq1 to Go that satisfies the
fourth property is called a homomorphism.



Theorem 6.1: Cayley’s Theorem

Every group is isomorphic to a group of per-
mutations.

Proof:

Let G be any group. We will show that G can
be viewed as a group of permutations acting
on its own elements.

For any g € G, let T; denote the function

Ty: G — G via z — zg,
that is, Ty is right multiplication by g.
Note: Gallian uses left multiplication 1y since
he composes group operations from right to

left. We compose from left to right, so we use
right multiplication for Tj.

Write zTy or T¢(x) for the image of  under Tj:

xTy = Ty(x) = xg.



Ty is a permutation on the set of elements of
G. (See Exercise 6.21.)

The set {1, : g € G} forms a group under com-
position, where T¢ is the identity and T, IS
the inverse of Ty. (See Exercise 6.8.)

Let ¢ map g to Ty,. We will show it is an
iIsomorphism.

It is one-to-one. If T, = 1}, then we apply
them both to the identity and get

Ty(e) = Ty(e) (eTy = hTy) so eg = eh (right
multiplication) and g = h.

It is clearly onto, since g maps to Tj.



The homomorphism property holds because

¢(ry) = Tpy =131y = ¢(z)p(y).

Therefore GG is isomorphic to the group
{Ty 9 € G}.

We call this group of permutations the
right regular representation of G.
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Example:

We form the right regular representation of Ds.

We label the elements of D3 and write each in
geometric and permutation notation:

Label | Geom. | Perm.
1 e 9,
2 R (132)
3 R? | (123)
4 D1 (23)
5 D2 (13)
6) D3 (12)
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Let us multiply R = (132) on the right by every
element of Dasi:

e- R = R
R-R = R?
R2-R = e
D1-R = D2
D2-R = D3
D3-R = D1

In labels, this is the permutation

1 2 3 45 6
2 315 6 4)°

which is the permutation (123)(456).
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Let us multiply D1 = (23) on the right by every
element of Dasi:

e-D1 = D1
R-D1 = D3
R2.D1 = D2
D1-D1 = e
D2.D1 = RZ?
D3-D1 = R

In labels, this is the permutation

1 2 3 45 6
4 6 51 3 2)°

which is the permutation (14)(26)(35).
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Theorem 6.2: Properties of Isomorphisms
Acting on Elements

Suppose that ¢ : G; — Go is an isomorphism.
Then the following properties hold.

1. ¢ sends the identity of G1 to the identity
of Go.

2. For every integer n and for every group
element a in G1, ¢(a"™) = (¢(a))™.

3. For any elements a,b € GG1, a and b com-
mute iff ¢(a) and ¢(b) commute.

4. The order of a, |a|] equals |¢(a)| for all a €
G'1 (isomorphisms preserve orders).
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5. For a fixed integer k and a fixed group ele-
ment b in G1, the equation z¥ = b has the
same number of solutions in G7 as does
the equation zF = ¢(b) in Go.

Proof:

Part 1: ¢(e1) = eon, where e1, e> are the identity
elements of (G1,Go, respectively.

Since e; = ejeq,

¢(e1) = ¢(e1e1) = ¢(e1)p(e1),

by the homomorphism property. By cancelling
»(eq) from both sides, we have er> = ¢(eq).



Part 2: When n is positive,

n

b(a") = $(@aa) = 3(a) - d(a) = d(a)™

The inverse of an element is preserved under
an isomorphism:

d(e1) = (g™ ") = d(9)p(g™ ) = ea.
Then ¢(¢g~1) is the inverse of ¢(g), that is,

(g7 1) = o(g) L.

Part 4: isomorphisms preserve orders.

Note a™ = eq iff ¢p(a)” = eo.
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Definition:
An isomorphism from a group G onto itself is
called an automorphism of G.

Definition:

Let G be a group, and let a € G. The function
ba defined by ¢a(xz) = a~lza for all z € G, is
called the inner automorphism of G induced
by a.
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