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Review from Lecture 15:
Theorem 6.1: Cayley’s Theorem

Every group is isomorphic to a group of per-
mutations.

Example:

¢(R-D1) = ¢ ((132)(23)) = ¢((132)) ¢((23))
$((132)) ¢((23)) = (123)(456) - (14)(26)(35)
(123)(456) - (14)(26)(35) = (16)(25)(34)

(16)(25)(34) = ¢((12)) = ¢(D3).



Theorem 6.2: Properties of Isomorphisms
Acting on Elements

Suppose that ¢ : G; — Go is an isomorphism.
Then the following properties hold.

1. ¢ sends the identity of G1 to the identity
of Go.

2. For every integer n and for every group
element a in G1, ¢(a"™) = (¢(a))™.

3. For any elements a,b € GG1, a and b com-
mute iff ¢(a) and ¢(b) commute.

4. The order of a, |a| equals |¢(a)| for all
a € G1 (isomorphisms preserve orders).




5. For a fixed integer k and a fixed group ele-
ment b in G1, the equation z¥ = b has the
same number of solutions in G1 as does
the equation zF = ¢(b) in Go.

Proof:

Part 5:
Apply the isomorphism ¢ to the equation

zF = b to get ¢(zF) = ¢(2)F = ¢(b).

Let's rename the variable z to y in the second
equation and write y* = ¢(b).

For every solution z € G71 to the first equa-
tion, we get a solution y € Go to the second
equation. Because ¢ is one-to-one, there are
at least as many y as x.



Suppose y € G- is a solution to y* = ¢(b).
Since ¢ is onto, there is an x € G1 such that

¢(x) = y.

Now y* = o(2)* = ¢(zF) = ¢(b). Since ¢ is
one-to-one, we know zf =

T herefore we have at least as many x as y, and
the number of solutions of the two equations
are equal.

(Non)example: C* is not isomorphic to R*
because the equation z% = 1 has a different
number of solutions in each group.



Theorem 6.3: Properties of Isomorphisms
Acting on Groups

Suppose that ¢ : G1 — G» is an isomorphism.
Then the following properties hold.

1. G1 is Abelian iff G» is Abelian.

2. (G1 is cyclic iff G is cyclic.

3. ¢~ 1 is an isomorphism from G5 to G1.

4. If K < Gp is a subgroup, then ¢(K) =
{p(k)|k € K} is a subgroup of Go.



Proof:

Part 1: follows from part 3 of Theorem 6.2,
which shows that isomorphisms preserve com-
mutativity.

Part 2: follows from part 4 of Theorem 6.2,
which shows that isomorphisms preserve order
and by noting that if G; = (a), then

G = (¢(a)).



Part 3: Since ¢ is one-to-one and onto, for
every y € (Go, there is a unique z € G71 such
that ¢(z) = y. Define ¢~ 1(y) to be this z.

Clearly, ¢—1 is one-to-one and onto, since ¢ is.

In fact, ¢ o1 is the identity map on G5, and
¢~ 1o ¢ is the identity map on Gj.

We need to show the homomorphism property
for ¢—1:

¢~ t(ab) = ¢~ (a) ¢~ 1(b).



Let ¢(z) =a (so ¢~ 1(a) = z) and
let ¢(y) =b (so ¢~ 1(b) =y).

Then substituting for a and b,

o 1(ab) = ¢ H(d(z)d(y))
¢~ 1 (p(zy))

— 2y

¢~ 1(a) ¢ (D).

Therefore ¢—1 : G, — G is an isomorphism.



Definition:

An isomorphism from a group G onto itself is
called an automorphism of . The set of
automorphisms is denoted Aut(G).

Example 9:
Complex conjugation is an automorphism of C
under addition and C* under multiplication.

Example 10:
In R2, &(a,b) = (b,a) is an automorphism of
R2 under componentwise addition.



Correction: Previously I defined an inner au-
tomorphism to be of the form ¢q(z) = azxa™1,
as Gallian does. To compose from left to right,
we need instead the following definition.

Definition:
Let G be a group, and let a € G.
The function ¢, defined by

da(x) = a_laja,

for all x € G, is called the inner automorphism
of G induced by a.

The set of inner automorphisms is denoted
Inn(G@).
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Theorem 6.4: Aut(G) and Inn(G) are groups

The set of automorphisms Aut(G) of a group
G and the set of inner automorphisms Inn(G)
of a group are both groups under the operation
of function compositions.

Proof:
(Exercise 15)

Inn(G) is closed under composition:

TPaPp = (a_lzva> op = b1 (a_lxa> b= xp,-

Inn(G) is closed under inversion:

Thap,-1 = (a_la:a)gba_l = .
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Example 13:
Aut(Z/10%) is isomorphic to U(10).

An automorphism o € Aut(Z/107Z) is deter-
mined by «a(1) because
k
alk)=a(l+1---+1) =ka(l).

Since 1 has order 10 in Z/10Z, Theorem 6.2
tells us that «(1) must also have order 10.

There are four elements of Z/10Z with order
10: 1, 3, 7, 9, hence a(1) must be one of the
four.
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Let a1, a3, a7, and ag be maps for which
a1(1) =1, a3(1) =3, a7(1) =7, and
ag(l) = 9.

These are the only possible automorphisms.
We can easily check that they are in fact au-

tomorphisms.

Consider a3. Since 3 generates Z/10Z, the
map is onto.

The map az is also one-to-one. If 3a = 3b,
then a = b, because 3 is invertible mod 10.

The homomorphism property holds since

az(a+b) =3(a+b) = 3a+3b = a3(a) + az(b).
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Theorem 6.5: Aut(Z/nZ) ~ U(n)

For every positive integer n, Aut(Z/nZ) is iso-
morphic to U(n).

The proof follows the reasoning of Example
13.
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Chapter 7.
Cosets and Lagrange’s Theorem

(page 134)

Definition:
Let G be a group and H a subset of . For
any a € GG, the set

{ah : h € H}
iIs denoted aH. Analogously,
Ha ={ha:hec H}.

When H is a subgroup of GG, aH is the left
coset of G containing a and Ha is the right
coset of G containing a.

We say that a is a coset representative of aH
or Ha. We write |aH| and |Ha| to denote the
number of elements in the respective sets.
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Theorem 7.1: Lagrange’s Theorem

If G is a finite group and H < G is a subgroup,
then |H| divides |G|. Moreover, the number
of distinct left (or right) cosets of H in G is
Gl/|H].
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