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Review from Lecture 16:

Theorem 6.2: Properties of Isomorphisms

Acting on Elements

Suppose that φ : G1 → G2 is an isomorphism.

(Part 5)

Then for a fixed integer k and a fixed group

element b in G1, the equation xk = b has the

same number of solutions in G1 as does the

equation xk = φ(b) in G2.
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Theorem 6.3: Properties of Isomorphisms

Acting on Groups

Suppose that φ : G1 → G2 is an isomorphism.

Then the following properties hold.

1. G1 is Abelian iff G2 is Abelian.

2. G1 is cyclic iff G2 is cyclic.

3. φ−1 is an isomorphism from G2 to G1.

4. If K ≤ G1 is a subgroup, then

φ(K) = {φ(k)|k ∈ K} is a subgroup of G2.
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Definition:

Let G be a group, and let a ∈ G.

The function φa defined by

φa(x) = a−1xa,

for all x ∈ G, is called the inner automorphism

of G induced by a.

The set of inner automorphisms is denoted

Inn(G).
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Theorem 6.4: Aut(G) and Inn(G) are groups

The set of automorphisms Aut(G) of a group

G and the set of inner automorphisms Inn(G)

of a group are both groups under the operation

of function compositions.

Example 13:

Aut(Z/10Z) is isomorphic to U(10).
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Theorem 6.5: Aut(Z/nZ) ≈ U(n)

For every positive integer n, Aut(Z/nZ) is iso-

morphic to U(n).

Proof:

Consider the map T : Aut(Z/nZ) → U(n) that

sends α ∈ Aut(Z/nZ) to α(1).

First we show that T does indeed map Aut(Z/nZ)

to U(n).

Recall from Example 13 that α(k) = k · α(1)

by the homomorphism property.

Since α is onto, there is an m ∈ Z/nZ such that

α(m) = 1 ∈ Z/nZ. Since α(m) = m · α(1) = 1,

the multiplicative inverse of α(1) is m modulo

n. So α(1) ∈ U(n).
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Second, we show that T is one-to-one.

Suppose that α, β ∈ Aut(Z/nZ).

If α(1) = β(1), then

α(k) = k · α(1) = k · β(1) = β(k),

for all k ∈ Z/nZ, so α and β are the same.
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Third, we show that T is onto.

Let r ∈ U(n) and consider the map

α : Z/nZ → Z/nZ via s 7→ rs (mod n).

Exercise 17 shows that α is an automorphism.

Then T (α) = α(1) = r shows that we have a

pre-image for r and that T is onto.

8



The fourth and final property to show is that T

preserves the group operation (the homomor-

phism property).

Let α, β be in Aut(Z/nZ). Then

T (α ◦ β) = (α ◦ β)(1) = α(β(1)).

Now α(k) = kα(1) = α(1)k, so

α(β(1)) = α(1)β(1) = T (α)T (β).
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Chapter 7:
Cosets and Lagrange’s Theorem

(page 134)

Definition:

Let G be a group and H a subset of G. For

any a ∈ G, the set

{ah : h ∈ H}

is denoted aH. Analogously,

Ha = {ha : h ∈ H}.

When H is a subgroup of G,

aH is the left coset of G containing a and

Ha is the right coset of G containing a.

We say that a is a coset representative of aH

or Ha. We write |aH| and |Ha| to denote the

number of elements in the respective sets.
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Example 1:

Let G = S3 and H = {(1), (13)}. Then the left

cosets of H in G are

(1)H = H = (13)H

(12)H = {(12)(1), (12)(13)} = {(12), (123)} =

(123)H

(23)H = {(23)(1), (23)(13)} = {(23), (132)} =

(132)H
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Example 3:

Let H = {0,3,6} in (Z/9Z,+).

We use a + H as additive notation for cosets.

The cosets of H in Z/9Z are

0 + H = H = {0,3,6} = 3 + H = 6 + H

1 + H = {1,4,7} = 4 + H = 7 + H

2 + H = {2,5,8} = 5 + H = 8 + H
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Lemma: Properties of Cosets

Let H be a subgroup of G and a, b ∈ G. Then

1. a ∈ aH,

2. aH = H iff a ∈ H,

3. aH = bH or aH ∩ bH = ∅,

4. aH = bH iff a−1b ∈ H,

5. |aH| = |bH|,

6. aH = Ha iff H = aHa−1,

7. aH < G iff a ∈ H.
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Proof:

Part 1: a = ae ∈ aH.

Part 2: Assume aH = H. Since a = ae ∈ aH,

then a ∈ H. Conversely, assume a ∈ H. Then

aH ⊆ H because H is closed under addition.

Now H ⊆ aH because for any h ∈ H, we know

a−1h ∈ H, so

h = eh = (aa−1)h = a(a−1h) ∈ aH.

Part 3: Suppose x ∈ aH ∩ bH. We wish to

show aH = bH. Let x = ah1 = bh2. Then a =

bh2h−1
1 and b = ah1h−1

2 . Now any ah ∈ aH can

be rewritten as b(h2h−1
1 h) ∈ bH. Conversely,

any bh ∈ bH can be rewritten as a(h1h−1
2 h) ∈

aH.
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Part 4: aH = bH iff H = a−1bH. Apply prop-

erty 2.

Part 5: The map that sends ah 7→ bh is clearly

onto. It is one-to-one because of cancellation.

If ah1 = ah2, then h1 = h2. This shows the

sets have the same size.

We’ll delay the proof of 6 and 7.

Note that properties 1, 3, and 5 show that the

left cosets of a subgroup H < G partition G

into blocks of equal size.
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Theorem 7.1: Lagrange’s Theorem

If G is a finite group and H < G is a subgroup,

then |H| divides |G|. Moreover, the number

of distinct left (or right) cosets of H in G is

|G|/|H|.

Proof:

Let a1H, a2H, . . . , arH denote a complete set of

distinct left cosets of H in G.

Since the cosets partition G, we have

G = a1H ∪ a2H ∪ · · · ∪ arH,

and then

|G| = |a1H|+ |a2H|+ · · ·+ |arH|.

Since all cosets have the same size, |G| = r|H|.
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Homework Assignment 9

Reading Assignment:

Chapter 7: 134–144

Homework Problems:

Chapter 6: 12, 14, 15, 17, 19, 20, 23, 24, 29,

32

Chapter 7: 1, 2, 3, 7
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