MA441: Algebraic Structures I

Lecture 18

5 November 2003

Review from Lecture 17:

Theorem 6.5: $Aut(\mathbb{Z}/n\mathbb{Z}) \approx U(n)$

For every positive integer n, $Aut(\mathbb{Z}/n\mathbb{Z})$ is isomorphic to U(n).

The proof used the map $T : \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \to U(n)$ that sends $\alpha \in \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ to $\alpha(1)$.

Chapter 7: Cosets and Lagrange's Theorem

Definition:

Let G be a group and H a subset of G. For any $a \in G$, the set

 $\{ah : h \in H\}$

is denoted aH. Analogously,

 $Ha = \{ha : h \in H\}.$

When H is a subgroup of G,

aH is the left coset of G containing a and Ha is the right coset of G containing a.

We say that *a* is a **coset representative** of aH or Ha. We write |aH| and |Ha| to denote the number of elements in the respective sets.

Example 1:

Let $G = S_3$ and $H = \{(1), (13)\}$. Then the left cosets of H in G are

 $H = \{(1), (13)\}$

 $(12)H = (123)H = \{(12), (123)\}$

(12) and (123) are coset representatives for this coset.

 $(23)H = (132)H = \{(23), (132)\}\$

(23) and (132) are coset representatives for this coset.

Example 3: Let $H = \{0, 3, 6\}$ in $(\mathbb{Z}/9\mathbb{Z}, +)$.

We use a + H as additive notation for cosets. The cosets of H in $\mathbb{Z}/9\mathbb{Z}$ are $0 + H = H = \{0, 3, 6\} = 3 + H = 6 + H$ $1 + H = \{1, 4, 7\} = 4 + H = 7 + H$ 1, 4, 7 are coset representatives for this coset. $2 + H = \{2, 5, 8\} = 5 + H = 8 + H$

2,5,8 are coset representatives for this coset.

Lemma: Properties of Cosets

Let H be a subgroup of G and $a, b \in G$. Then

1.
$$a \in aH$$
,

2.
$$aH = H$$
 iff $a \in H$,

- 3. aH = bH or $aH \cap bH = \emptyset$,
- 4. aH = bH iff $a^{-1}b \in H$,

$$5. |aH| = |bH|,$$

6. aH = Ha iff $H = aHa^{-1}$,

7. aH < G iff $a \in H$.

6

Proof:

Part 1: $a = ae \in aH$.

Part 2: aH = H iff $a \in H$.

Assume aH = H. Show $a \in H$.

Since $a = ae \in aH = H$, then $a \in H$.

(Proof of part 2 continued)

Conversely, assume $a \in H$. Show aH = H.

First show $aH \subseteq H$.

Since H is closed under the group operation, $aH \subseteq H$.

Next show $H \subseteq aH$.

Since $a \in H$, we have $a^{-1} \in H$.

For any $h \in H$, we know $a^{-1}h \in H$, so

$$h = eh = (aa^{-1})h = a(a^{-1}h) \in aH,$$

which shows $h \in aH$.

Part 3: aH = bH or $aH \cap bH = \emptyset$.

We prove this by assuming the second statement is false and showing that this implies the first statement is true.

Suppose $x \in aH \cap bH$, i.e., $aH \cap bH$ is not empty.

We wish to show aH = bH.

Let $x = ah_1 = bh_2$, for some $h_1, h_2 \in H$.

Then
$$a = bh_2 h_1^{-1}$$
 and $b = ah_1 h_2^{-1}$.

Then $aH = (bh_2h_1^{-1})H = b(h_2h_1^{-1}H).$

Now $h_2h_1^{-1} \in H$, so by Part 2, $h_2h_1^{-1}H = H$. So $aH = b(h_2h_1^{-1}H) = bH$.

9

Part 4: aH = bH iff $a^{-1}b \in H$.

Assume aH = bH.

Multiply on the left by a^{-1} .

aH = bH iff $H = a^{-1}bH$.

By Part 2, $H = a^{-1}bH$ iff $a^{-1}b \in H$.

Part 5: |aH| = |bH|

We will exhibit a one-to-one and onto map between aH and bH.

The map that sends $ah \mapsto bh$ is clearly onto.

It is one-to-one because of cancellation: if $ah_1 = ah_2$, then $h_1 = h_2$.

This shows the sets have the same size.

Note that properties 1, 3, and 5 show that the left cosets of a subgroup H < G partition G into blocks of equal size.

Property 1 says every element is contained in a coset.

Property 3 says two cosets are identical or disjoint. That means every group element is contained in exactly one coset.

Property 5 says all the cosets are the same size.

Part 6: aH = Ha iff $H = aHa^{-1}$.

aH = Ha iff $(aH)a^{-1} = (Ha)a^{-1}$ iff $aHa^{-1} = H$.

We can break this down in greater detail as an exercise.

Let's consider one direction: aH = Ha implies $H = aHa^{-1}$.

(The other direction will be essentially the same reasoning in reverse.)

Suppose aH = Ha.

First we prove $H \subseteq aHa^{-1}$.

Choose any $h \in H$. Then there is an $h' \in H$ such that ah' = ha. so $h = ah'a^{-1}$.

That proves $H \subseteq aHa^{-1}$.

Next we prove $aHa^{-1} \subseteq H$.

Choose any $aha^{-1} \in aHa^{-1}$, where $h \in H$. Let $g = aha^{-1}$. Then ga = ah. Since aH = Ha, g must be in H.

That proves $aHa^{-1} \subseteq H$, so $aHa^{-1} = H$.

Part 7: aH < G iff $a \in H$

(That is, aH = H.)

Suppose aH is a subgroup of G.

Then aH contains the identity, so aH = H(Part 3), which holds iff $a \in H$ (Part 2).

Conversely, if $a \in H$, then aH = H < G(Part 2).

Theorem 7.1: Lagrange's Theorem

If G is a finite group and H < G is a subgroup, then |H| divides |G|. Moreover, the number of distinct left (or right) cosets of H in G is |G|/|H|.

Proof:

Let a_1H, a_2H, \ldots, a_rH denote a complete set of distinct left cosets of H in G.

Since the cosets partition G, we have

$$G = a_1 H \cup a_2 H \cup \cdots \cup a_r H,$$

and then

$$|G| = |a_1H| + |a_2H| + \dots + |a_rH|.$$

Since all cosets have the same size, |G| = r|H|.

Definition:

The **index** of a subgroup H in G is the number of distinct left cosets of H in G and is denoted |G : H| (or [G : H]).

We consider some implications of Lagrange's Theorem.

Corollary 1:

If G is a finite group and H < G, then |G : H| = |G|/|H|.

In the notation of the theorem, r = |G : H| = |G|/|H|.

Corollary 2:

In a finite group, the order of each element divides the order of the group.

For every $a \in G$, $\langle a \rangle < G$, and $|a| = |\langle a \rangle|$.

Corollary 3: Groups of Prime Order are Cyclic

A group of prime order is cyclic.

Proof:

Suppose $a \in G$, $a \neq e$. Then |a| divides |G|, which is prime, so |a| = |G|. Therefore $\langle a \rangle = G$.

Corollary 4:

Let G be a finite group, and let $a \in G$. Then $a^{|G|} = e$.

Proof:

By Corollary 2, |a| divides |G|, say $|G| = |a| \cdot k$.

Then $a^{|G|} = a^{|a|k} = e^k = e$.

Corollary 5: Fermat's Little Theorem

For every integer a and every prime p, $a^p\equiv a \pmod{p}.$

Proof:

Consider U(p). Let $a \equiv r \pmod{p}$, where $0 \leq r < p$.

The order of U(p) is p-1. So by Corollary 4, $a^{p-1} = r^{p-1} = e$ in U(p). Multiply by a to get $a^p \equiv a \pmod{p}$. Note that the converse to Lagrange's Theorem is false.

(The converse is true for cyclic groups.)

Theorem 7.2: Classification of Groups of Order 2p

Let G be a group of order 2p, where p is a prime greater than 2. Then G is isomorphic to either $\mathbb{Z}/2p\mathbb{Z}$ or D_p .