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Review from Lecture 17:

Theorem 6.5: Aut(Z/nZ) ≈ U(n)

For every positive integer n, Aut(Z/nZ)

is isomorphic to U(n).

The proof used the map T : Aut(Z/nZ) → U(n)

that sends α ∈ Aut(Z/nZ) to α(1).
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Chapter 7:
Cosets and Lagrange’s Theorem

Definition:

Let G be a group and H a subset of G. For

any a ∈ G, the set

{ah : h ∈ H}

is denoted aH. Analogously,

Ha = {ha : h ∈ H}.

When H is a subgroup of G,

aH is the left coset of G containing a and

Ha is the right coset of G containing a.

We say that a is a coset representative of aH

or Ha. We write |aH| and |Ha| to denote the

number of elements in the respective sets.
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Example 1:

Let G = S3 and H = {(1), (13)}. Then the left

cosets of H in G are

H = {(1), (13)}

(12)H = (123)H = {(12), (123)}

(12) and (123) are coset representatives for

this coset.

(23)H = (132)H = {(23), (132)}

(23) and (132) are coset representatives for

this coset.
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Example 3:

Let H = {0,3,6} in (Z/9Z,+).

We use a + H as additive notation for cosets.

The cosets of H in Z/9Z are

0 + H = H = {0,3,6} = 3 + H = 6 + H

1 + H = {1,4,7} = 4 + H = 7 + H

1,4,7 are coset representatives for this coset.

2 + H = {2,5,8} = 5 + H = 8 + H

2,5,8 are coset representatives for this coset.
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Lemma: Properties of Cosets

Let H be a subgroup of G and a, b ∈ G. Then

1. a ∈ aH,

2. aH = H iff a ∈ H,

3. aH = bH or aH ∩ bH = ∅,

4. aH = bH iff a−1b ∈ H,

5. |aH| = |bH|,

6. aH = Ha iff H = aHa−1,

7. aH < G iff a ∈ H.
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Proof:

Part 1: a = ae ∈ aH.

Part 2: aH = H iff a ∈ H.

Assume aH = H. Show a ∈ H.

Since a = ae ∈ aH = H, then a ∈ H.
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(Proof of part 2 continued)

Conversely, assume a ∈ H. Show aH = H.

First show aH ⊆ H.

Since H is closed under the group operation,

aH ⊆ H.

Next show H ⊆ aH.

Since a ∈ H, we have a−1 ∈ H.

For any h ∈ H, we know a−1h ∈ H, so

h = eh = (aa−1)h = a(a−1h) ∈ aH,

which shows h ∈ aH.
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Part 3: aH = bH or aH ∩ bH = ∅.

We prove this by assuming the second state-

ment is false and showing that this implies the

first statement is true.

Suppose x ∈ aH∩bH, i.e., aH∩bH is not empty.

We wish to show aH = bH.

Let x = ah1 = bh2, for some h1, h2 ∈ H.

Then a = bh2h−1
1 and b = ah1h−1

2 .

Then aH = (bh2h−1
1 )H = b(h2h−1

1 H).

Now h2h−1
1 ∈ H, so by Part 2, h2h−1

1 H = H.

So aH = b(h2h−1
1 H) = bH.
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Part 4: aH = bH iff a−1b ∈ H.

Assume aH = bH.

Multiply on the left by a−1.

aH = bH iff H = a−1bH.

By Part 2, H = a−1bH iff a−1b ∈ H.
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Part 5: |aH| = |bH|

We will exhibit a one-to-one and onto map be-

tween aH and bH.

The map that sends ah 7→ bh is clearly onto.

It is one-to-one because of cancellation: if

ah1 = ah2, then h1 = h2.

This shows the sets have the same size.
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Note that properties 1, 3, and 5 show that the

left cosets of a subgroup H < G partition G

into blocks of equal size.

Property 1 says every element is contained in

a coset.

Property 3 says two cosets are identical or dis-

joint. That means every group element is con-

tained in exactly one coset.

Property 5 says all the cosets are the same

size.
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Part 6: aH = Ha iff H = aHa−1.

aH = Ha iff (aH)a−1 = (Ha)a−1 iff

aHa−1 = H.

We can break this down in greater detail as an

exercise.

Let’s consider one direction: aH = Ha implies

H = aHa−1.

(The other direction will be essentially the same

reasoning in reverse.)
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Suppose aH = Ha.

First we prove H ⊆ aHa−1.

Choose any h ∈ H. Then there is an h′ ∈ H

such that ah′ = ha. so h = ah′a−1.

That proves H ⊆ aHa−1.

Next we prove aHa−1 ⊆ H.

Choose any aha−1 ∈ aHa−1, where h ∈ H. Let

g = aha−1. Then ga = ah. Since aH = Ha, g

must be in H.

That proves aHa−1 ⊆ H, so aHa−1 = H.
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Part 7: aH < G iff a ∈ H

(That is, aH = H.)

Suppose aH is a subgroup of G.

Then aH contains the identity, so aH = H

(Part 3), which holds iff a ∈ H (Part 2).

Conversely, if a ∈ H, then aH = H < G

(Part 2).
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Theorem 7.1: Lagrange’s Theorem

If G is a finite group and H < G is a subgroup,

then |H| divides |G|. Moreover, the number

of distinct left (or right) cosets of H in G is

|G|/|H|.

Proof:

Let a1H, a2H, . . . , arH denote a complete set of

distinct left cosets of H in G.

Since the cosets partition G, we have

G = a1H ∪ a2H ∪ · · · ∪ arH,

and then

|G| = |a1H|+ |a2H|+ · · ·+ |arH|.

Since all cosets have the same size, |G| = r|H|.
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Definition:

The index of a subgroup H in G is the number

of distinct left cosets of H in G and is denoted

|G : H| (or [G : H]).

We consider some implications of Lagrange’s

Theorem.

Corollary 1:

If G is a finite group and H < G, then |G : H| =
|G|/|H|.

In the notation of the theorem, r = |G : H| =
|G|/|H|.
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Corollary 2:

In a finite group, the order of each element

divides the order of the group.

For every a ∈ G, 〈a〉 < G, and |a| = |〈a〉|.

Corollary 3: Groups of Prime Order are

Cyclic

A group of prime order is cyclic.

Proof:

Suppose a ∈ G, a 6= e. Then |a| divides |G|,
which is prime, so |a| = |G|. Therefore 〈a〉 = G.
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Corollary 4:

Let G be a finite group, and let a ∈ G. Then

a|G| = e.

Proof:

By Corollary 2, |a| divides |G|, say |G| = |a| · k.

Then a|G| = a|a|k = ek = e.
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Corollary 5: Fermat’s Little Theorem

For every integer a and every prime p,

ap ≡ a (mod p).

Proof:

Consider U(p). Let a ≡ r (mod p),

where 0 ≤ r < p.

The order of U(p) is p − 1. So by Corollary 4,

ap−1 = rp−1 = e in U(p). Multiply by a to get

ap ≡ a (mod p).

20



Note that the converse to Lagrange’s Theorem

is false.

(The converse is true for cyclic groups.)
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Theorem 7.2: Classification of Groups of

Order 2p

Let G be a group of order 2p, where p is a

prime greater than 2. Then G is isomorphic to

either Z/2pZ or Dp.
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