MA441: Algebraic Structures I

Lecture 2

8 September 2003

Review:

A group G is a set with a binary operation that satisfies four properties:

- Closure
- Associativity
- Identity
- Inverses

Note:

The associativity property lets us write a composition without parentheses:

$$abc = a(bc) = (ab)c.$$

For a positive integer n, we write a^n for the product of a taken n times.

When n is negative, we mean $(a^{-1})^n$.

We take $a^0 = e$.

(From Chapter 0, page 5)

Division Algorithm

Let a, b be integers with b > 0. Then there exist unique integers q, r with the property that

$$a = qb + r,$$

where $0 \leq r < b$.

Example:

Let a = 17 and b = 5. Then a = 3b + 2(q = 3, r = 2).

Definition:

The greatest common divisor of two nonzero integers a and b is the largest of all common divisors of a and b. We denote this integer by gcd(a,b).

When gcd(a, b) = 1, we say that a and b are relatively prime.

Fact: GCD is a linear combination

For any nonzero integers a, b, there exist integers s and t such that gcd(a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive integer of the form as + bt. By repeatedly applying the division algorithm to two nonzero integers a and b, we can compute gcd(a,b) and the linear combination gcd(a,b) = as + bt.

Example:

a = 17, b = 5

 $17 = 3 \cdot 5 + 2$ $5 = 2 \cdot 2 + 1.$

We can work backwards to write

$$1 = 5 - 2 \cdot 2$$

$$2 = 17 - 3 \cdot 5$$

$$1 = 5 - 2(17 - 3 \cdot 5)$$

$$= 7 \cdot 5 - 2 \cdot 17.$$

Note:

Let a, b be two relatively prime integers.

We can find s, t such that as + bt = 1.

Then $as \equiv 1 \pmod{b}$ and we say that a has a multiplicative inverse modulo b.

Likewise, $bt \equiv 1 \pmod{a}$ and we say that b has a multiplicative inverse modulo a. (From Chapter 1, page 33)

Definition:

Let G be a group of n elements.

A **Cayley table** (or **operation table**) is a table with n rows, indexed by the elements of G, and n columns, also indexed by G, such that the table entry corresponding to (a, b) is the product (or composition) ab in G.

Example

The dihedral group of an equilateral triangle, D_3 , has 6 elements corresponding to rotation by 0, 120, and 240 degrees and reflection about an axis going through each vertex.

(Chapter 2, page 49)

Definition:

Let S be a subset of a group G. We say that S generates G if every element of G can be written as a product of elements of S or their inverses.

In other words, for any g in G, there are x_i $(i = 1 \dots n)$ such that either x_i or x_i^{-1} is in Sand

$$g = x_1 x_2 \cdots x_n.$$

We say that S is a set of **generators** for G.

Example:

The dihedral group D_4 is generated by a rotation and a flip. For example, let $R = R_{90}$ and F = V be the flip about the vertical axis.

Compute $R, R^2, R^3, R^4 = e$. Then apply F to these four elements to get RF, R^2F, R^3F, F .

(From Chapter 2, page 43 on)

Examples

Example 1

The set of integers \mathbb{Z} , the set of rational numbers \mathbb{Q} , and the set of real numbers \mathbb{R} are all groups under ordinary addition. In each case, the identity is 0 and the inverse of a is -a.

Example 4

The set of positive rationals \mathbb{Q}^+ is a group under multiplication. The inverse of a is 1/a.

Example 7

The set of integers modulo $n \{0, 1, ..., n-1\}$, denoted $\mathbb{Z}/n\mathbb{Z}$ (often shortened to \mathbb{Z}_n) is a group under addition modulo n. The inverse of j is n - j.

Example 9

The 2-by-2 matrices with real coefficients and nonzero determinant form a group under multiplication called the **general linear group** of 2-by-2 matrices over \mathbb{R} , denoted $GL(2,\mathbb{R})$.

Example 11

An integer a has a multiplicative inverse modulo n iff a and n are relatively prime. For each n > 1, we define U(n) to be the set of positive integers that are less than n and that are relatively prime to n. Then U(n) is a group under multiplication.

In particular, when n is a prime p, $\mathbb{Z}/p\mathbb{Z}$ is the set $\{1, 2, \ldots, p-1\}$. We sometimes write $(\mathbb{Z}/p\mathbb{Z})^*$ for this group.

(From Chapter 2, page 50)

Theorem 2.1:

In a group G, there is only one identity element.

Proof:

Suppose there are two identities e and e' such that for any $a \in G$, ae = ea = a and ae' = e'a = a. Then

$$e = ee' = e'.$$

Theorem 2.3:

For each element a in a group G, there is a unique inverse b in G such that ab = ba = e.

Proof:

Suppose that b and c are inverses of a. Then ab = ac = e. Multiply on the left by b and apply the associativity and inverse rules.

$$ab = ac$$

$$b(ab) = b(ac)$$

$$(ba)b = (ba)c$$

$$b = c.$$

(From Chapter 5, page 93)

A **permutation** of a set is a mapping that exchanges or rearranges the elements of the set.

Definition:

A **permutation** of a set A is a function from A to A that is both one-to-one and onto. A **permutation group of a set** A is a set of permutations of A that forms a group under function composition.

Example:

Let A be the set $\{1, 2, 3, 4\}$. Let α be a permutation defined by $\alpha(1) = 2$, $\alpha(2) = 3$, $\alpha(3) = 1$, $\alpha(4) = 4$.

We can write α in a table format as follows:

$$\alpha = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{array} \right]$$

We can represent the dihedral group D_4 as a permutation group. Take generators $R = R_{90}$ and F the vertical flip.

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}$$
$$F = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix}$$

We compose RF to get

$$RF = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{array} \right]$$

Reading Assignment

Chapter 0, pages 3-8

All of Chapter 1 and Chapter 2

Chapter 5, pages 93-96

Homework

Chapter 0: 1, 2, 3, 4

Chapter 1: 2, 3, 4

Chapter 2: 1, 4, 16, 18, 24

As permutations, compute the composition FRFR. Show the intermediate steps FR, FRF.