MA441: Algebraic Structures I

Lecture 2

8 September 2003

Review:

A group G is a set with a binary operation that satisfies four properties:

- Closure
- Associativity
- Identity
- Inverses

Note:

The associativity property lets us write a composition without parentheses:
$a b c=a(b c)=(a b) c$.

For a positive integer n, we write a^{n} for the product of a taken n times.

When n is negative, we mean $\left(a^{-1}\right)^{n}$.

We take $a^{0}=e$.
(From Chapter 0, page 5)

Division Algorithm

Let a, b be integers with $b>0$. Then there exist unique integers q, r with the property that

$$
a=q b+r
$$

where $0 \leq r<b$.

Example:

Let $a=17$ and $b=5$. Then $a=3 b+2$ ($q=3, r=2$) .

Definition:

The greatest common divisor of two nonzero integers a and b is the largest of all common divisors of a and b. We denote this integer by $\operatorname{gcd}(a, b)$.

When $\operatorname{gcd}(a, b)=1$, we say that a and b are relatively prime.

Fact: GCD is a linear combination

For any nonzero integers a, b, there exist integers s and t such that $\operatorname{gcd}(a, b)=a s+b t$. Moreover, $\operatorname{gcd}(a, b)$ is the smallest positive integer of the form $a s+b t$.

By repeatedly applying the division algorithm to two nonzero integers a and b, we can compute $\operatorname{gcd}(a, b)$ and the linear combination $\operatorname{gcd}(a, b)=a s+b t$.

Example:

$a=17, b=5$

$$
\begin{aligned}
17 & =3 \cdot 5+2 \\
5 & =2 \cdot 2+1
\end{aligned}
$$

We can work backwards to write

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
2 & =17-3 \cdot 5 \\
1 & =5-2(17-3 \cdot 5) \\
& =7 \cdot 5-2 \cdot 17
\end{aligned}
$$

Note:

Let a, b be two relatively prime integers.

We can find s, t such that $a s+b t=1$.

Then $a s \equiv 1(\bmod b)$ and we say that a has a multiplicative inverse modulo b.

Likewise, $b t \equiv 1(\bmod a)$ and we say that b has a multiplicative inverse modulo a.
(From Chapter 1, page 33)

Definition:

Let G be a group of n elements.
A Cayley table (or operation table) is a table with n rows, indexed by the elements of G, and n columns, also indexed by G, such that the table entry corresponding to (a, b) is the product (or composition) $a b$ in G.

Example

The dihedral group of an equilateral triangle, D_{3}, has 6 elements corresponding to rotation by 0,120 , and 240 degrees and reflection about an axis going through each vertex.
(Chapter 2, page 49)

Definition:

Let S be a subset of a group G. We say that S generates G if every element of G can be written as a product of elements of S or their inverses.

In other words, for any g in G, there are x_{i} ($i=1 \ldots n$) such that either x_{i} or x_{i}^{-1} is in S and

$$
g=x_{1} x_{2} \cdots x_{n}
$$

We say that S is a set of generators for G.

Example:

The dihedral group D_{4} is generated by a rotation and a flip. For example, let $R=R_{90}$ and $F=V$ be the flip about the vertical axis.

Compute $R, R^{2}, R^{3}, R^{4}=e$. Then apply F to these four elements to get $R F, R^{2} F, R^{3} F, F$.
(From Chapter 2, page 43 on)

Examples

Example 1

The set of integers \mathbb{Z}, the set of rational numbers \mathbb{Q}, and the set of real numbers \mathbb{R} are all groups under ordinary addition. In each case, the identity is 0 and the inverse of a is $-a$.

Example 4

The set of positive rationals \mathbb{Q}^{+}is a group under multiplication. The inverse of a is $1 / a$.

Example 7

The set of integers modulo $n\{0,1, \ldots, n-1\}$, denoted $\mathbb{Z} / n \mathbb{Z}$ (often shortened to \mathbb{Z}_{n}) is a group under addition modulo n. The inverse of j is $n-j$.

Example 9

The 2-by-2 matrices with real coefficients and nonzero determinant form a group under multiplication called the general linear group of 2-by-2 matrices over \mathbb{R}, denoted $G L(2, \mathbb{R})$.

Example 11

An integer a has a multiplicative inverse modulo n iff a and n are relatively prime. For each $n>1$, we define $U(n)$ to be the set of positive integers that are less than n and that are relatively prime to n. Then $U(n)$ is a group under multiplication.

In particular, when n is a prime $p, \mathbb{Z} / p \mathbb{Z}$ is the set $\{1,2, \ldots, p-1\}$. We sometimes write $(\mathbb{Z} / p \mathbb{Z})^{*}$ for this group.
(From Chapter 2, page 50)

Theorem 2.1:

In a group G, there is only one identity element.

Proof:

Suppose there are two identities e and e^{\prime} such that for any $a \in G, a e=e a=a$ and $a e^{\prime}=e^{\prime} a=$ a. Then

$$
e=e e^{\prime}=e^{\prime}
$$

Theorem 2.3:

For each element a in a group G, there is a unique inverse b in G such that $a b=b a=e$.

Proof:

Suppose that b and c are inverses of a. Then $a b=a c=e$. Multiply on the left by b and apply the associativity and inverse rules.

$$
\begin{aligned}
a b & =a c \\
b(a b) & =b(a c) \\
(b a) b & =(b a) c \\
b & =c .
\end{aligned}
$$

(From Chapter 5, page 93)

A permutation of a set is a mapping that exchanges or rearranges the elements of the set.

Definition:

A permutation of a set A is a function from A to A that is both one-to-one and onto. A permutation group of a set A is a set of permutations of A that forms a group under function composition.

Example:

Let A be the set $\{1,2,3,4\}$. Let α be a permutation defined by $\alpha(1)=2, \alpha(2)=3, \alpha(3)=$ $1, \alpha(4)=4$.

We can write α in a table format as follows:

$$
\alpha=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right]
$$

We can represent the dihedral group D_{4} as a permutation group. Take generators $R=R_{90}$ and F the vertical flip.

$$
\begin{aligned}
& R=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right] \\
& F=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right]
\end{aligned}
$$

We compose $R F$ to get

$$
R F=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right]
$$

Reading Assignment

Chapter 0, pages 3-8

All of Chapter 1 and Chapter 2

Chapter 5, pages 93-96

Homework

Chapter 0: 1, 2, 3, 4

Chapter 1: 2, 3, 4

Chapter 2: 1, 4, 16, 18, 24

As permutations, compute the composition $F R F R$. Show the intermediate steps $F R, F R F$.

