MA441: Algebraic Structures I
 Lecture 20

12 November 2003

Review from Lecture 19:

We proved five corollaries of Lagrange's Theorem.

Corollary 1:

If G is a finite group and $H<G$, then $|G: H|=|G| /|H|$.

Corollary 2:

In a finite group, the order of each element divides the order of the group.

Corollary 3:

A group of prime order is cyclic.

Corollary 4:

Let G be a finite group, and let $a \in G$. Then $a^{|G|}=e$.

Corollary 5: Fermat's Little Theorem

For every integer a and every prime p, $a^{p} \equiv a(\bmod p)$.

Theorem 7.2: Classification of Groups of Order $2 p$

Let G be a group of order $2 p$, where p is a prime greater than 2. Then G is isomorphic to either $\mathbb{Z} / 2 p \mathbb{Z}$ or D_{p}.

The proof relied on considering

- whether there was an element of order $2 p$ or not,
- whether all (non-identity) elements had order 2 or whether there was an element a of order p,
- analyzing the cosets of the cyclic subgroup of order p and finding an element b of order 2, and
- proving the relation $a b=b^{-1} a$.

Definition: Stabilizer of a Point

Let G be a group of permutations of a set S. For each i in S, let

$$
\operatorname{Stab}_{G}(i)=\{\phi \in G: \phi(i)=i\},
$$

(or alternatively,

$$
\operatorname{Stab}_{G}(i)=\{a \in G: i a=i\},
$$

where $i a=i \cdot a$ denotes the action of a on i on the right.)

We call $\operatorname{Stab}_{G}(i)$ the stabilizer of i in G.

We have alrady verified that the stabilizer of a point is a subgroup (Exercise 5.31).

Definition: The Orbit of a Point

Let G be a group of permutations of a set S.
For each $i \in S$, let

$$
\operatorname{Orb}_{G}(s)=\{\phi(s): \phi \in G\}
$$

(or alternatively,

$$
\operatorname{Orb}_{G}(s)=\{s a: a \in G\}
$$

where $s a=s \cdot a$ denotes the action of a on s on the right.)

The set $\operatorname{Orb}_{G}(s)$ is a subset of S called the orbit of s under G.

We write $\left|\operatorname{Orb}_{G}(s)\right|$ for the number of elements in $\operatorname{Orb}_{G}(s)$.

Theorem 7.3: Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a set S. Then for any i in S,

$$
|G|=\left|\operatorname{Stab}_{G}(i)\right| \cdot\left|\operatorname{Orb}_{G}(i)\right| .
$$

The idea of the proof is to show that $\left|G: \operatorname{Stab}_{G}(i)\right|=|G| /\left|\operatorname{Stab}_{G}(i)\right|$ equals $\left|\operatorname{Orb}_{G}(i)\right|$ by showing there is a bijection between the left cosets of $\operatorname{Stab}_{G}(i)<G$ and $\operatorname{Orb}_{G}(i)$.

Let $H=\operatorname{Stab}_{G}(i)$.

For any $\phi \in G$, let T be the correspondence that sends cosets of H to the orbit $\mathrm{Orb}_{G}(i)$ via $\phi H \mapsto \phi(i)$.

First, we show that T is well-defined, that is, the image of a coset under T does not depend on which representative we choose.

Suppose $\alpha H=\beta H$. Then $\alpha^{-1} \beta \in H$. So $\alpha^{-1} \beta(i)=i$ and thus $\alpha(i)=\beta(i)$.

Second, we show that T is one-to-one. If $\alpha(i)=\beta(i)$, then by reversing the steps, we see $\alpha H=\beta H$.

Third, we show that T is onto. If $j \in \operatorname{Orb}_{G}(i)$, then there is some ϕ such that $j=\alpha(i)$. Then $\alpha H \mapsto j$ under T.

Since T is a bijection, $|G: H|=\left|\operatorname{Orb}_{G}(i)\right|$, which proves the theorem.

Chapter 8:
 External Direct Products

(page 150)

Definition:
Let $G_{1}, G_{2}, \ldots, G_{n}$ be a finite collection of groups. The external direct product of these groups, written as

$$
G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n},
$$

is the set of all n-tuples for which the i-th component is an element of G_{i} and the group operation on the set of n-tuples is the componentwise operation, where i-th components are composed in the group G_{i}.

In symbols,

$$
G_{1} \oplus \cdots \oplus G_{n}=\left\{\left(g_{1}, \ldots, g_{n}\right): g_{i} \in G_{i}\right\}
$$

where the composition law is

$$
\left(g_{1}, \ldots, g_{n}\right) \cdot\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)=\left(g_{1} g_{1}^{\prime}, \ldots, g_{n} g_{n}^{\prime}\right)
$$

The composition $g_{i} g_{i}^{\prime}$ is formed according to the group operation of G_{i}.

Let e_{i} denote the identity element of G_{i}.

The identity of $G_{1} \oplus \cdots \oplus G_{n}$ is $\left(e_{1}, \ldots, e_{n}\right)$, which we shorten to (e, \ldots, e).

The inverse of $\left(g_{1}, \ldots, g_{n}\right)$ is $\left(g_{1}^{-1}, \ldots, g_{n}^{-1}\right)$.

Theorem:

The external direct product $G_{1} \oplus \cdots \oplus G_{n}$ is a group.

Proof:

(Exercise 8.1)

Example:

The two-dimensional vector space over the reals, \mathbb{R}^{2}, taken as an additive group, is the external direct product of two copies of \mathbb{R}. We write

$$
\mathbb{R}^{2}=\mathbb{R} \oplus \mathbb{R}
$$

The group operation is componentwise addition.

Example 1: $U(8) \oplus U(10)$
$U(8) \oplus U(10)=\{(1,1),(1,3),(1,7),(1,9),(3,1), \ldots$
$\ldots,(7,7),(7,9)\}$
$(3,7)(7,9)=(5,3)$

Theorem 8.1: Order of an element in a Direct Product

The order of an element in a direct product of a finite number of finite groups is the least common multiple (LCM) of the orders of the components of the element. In symbols,

$$
\left.\left|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right|=\operatorname{Icm}\left(\left|g_{1}\right|,\left|g_{2}\right|, \ldots,\left|g_{n}\right|\right)\right\}
$$

Compare this to the result by Ruffini (Theorem 5.3) that the order of a permutation written in disjoint cycle notation is the LCM of the cycle lengths.

Proof:

We treat only the case $n=2$. The general case can be done by induction. (Exercise 8.2)

Let $\left(g_{1}, g_{2}\right)$ be an arbitrary element of $G_{1} \oplus G_{2}$.

Let

$$
s=\operatorname{lcm}\left(\left|g_{1}\right|,\left|g_{2}\right|\right)
$$

and

$$
t=\left|\left(g_{1}, g_{2}\right)\right| .
$$

We will show that s and t divide each other.

We know that t divides s, because

$$
\left(g_{1}, g_{2}\right)^{s}=\left(g_{1}^{s}, g_{2}^{s}\right)=(e, e)
$$

Conversely,

$$
\left(g_{1}, g_{2}\right)^{t}=(e, e)=\left(g_{1}^{t}, g_{2}^{t}\right),
$$

so $\left|g_{1}\right|$ and $\left|g_{2}\right|$ divide t, meaning s divides t.

Therefore $s=t$.

