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Review from Lecture 19:

We proved five corollaries of Lagrange’s The-

orem.

Corollary 1:

If G is a finite group and H < G, then

|G : H| = |G|/|H|.

Corollary 2:

In a finite group, the order of each element

divides the order of the group.
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Corollary 3:

A group of prime order is cyclic.

Corollary 4:

Let G be a finite group, and let a ∈ G.

Then a|G| = e.

Corollary 5: Fermat’s Little Theorem

For every integer a and every prime p,

ap ≡ a (mod p).
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Theorem 7.2: Classification of Groups of

Order 2p

Let G be a group of order 2p, where p is a

prime greater than 2. Then G is isomorphic to

either Z/2pZ or Dp.
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The proof relied on considering

• whether there was an element of order 2p

or not,

• whether all (non-identity) elements had or-

der 2 or whether there was an element a

of order p,

• analyzing the cosets of the cyclic subgroup

of order p and finding an element b of order

2, and

• proving the relation ab = b−1a.
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Definition: Stabilizer of a Point

Let G be a group of permutations of a set S.

For each i in S, let

StabG(i) = {φ ∈ G : φ(i) = i},

(or alternatively,

StabG(i) = {a ∈ G : ia = i},

where ia = i · a denotes the action of a on i on

the right.)

We call StabG(i) the stabilizer of i in G.

We have alrady verified that the stabilizer of a

point is a subgroup (Exercise 5.31).
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Definition: The Orbit of a Point

Let G be a group of permutations of a set S.

For each i ∈ S, let

OrbG(s) = {φ(s) : φ ∈ G},

(or alternatively,

OrbG(s) = {sa : a ∈ G},

where sa = s · a denotes the action of a on s

on the right.)

The set OrbG(s) is a subset of S called the

orbit of s under G.

We write |OrbG(s)| for the number of elements

in OrbG(s).
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Theorem 7.3: Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a

set S. Then for any i in S,

|G| = |StabG(i)| · |OrbG(i)|.

The idea of the proof is to show that

|G : StabG(i)| = |G|/|StabG(i)| equals |OrbG(i)|
by showing there is a bijection between the left

cosets of StabG(i) < G and OrbG(i).
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Let H = StabG(i).

For any φ ∈ G, let T be the correspondence

that sends cosets of H to the orbit OrbG(i)

via φH 7→ φ(i).

First, we show that T is well-defined, that is,

the image of a coset under T does not depend

on which representative we choose.

Suppose αH = βH. Then α−1β ∈ H. So

α−1β(i) = i and thus α(i) = β(i).
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Second, we show that T is one-to-one. If

α(i) = β(i), then by reversing the steps, we

see αH = βH.

Third, we show that T is onto. If j ∈ OrbG(i),

then there is some φ such that j = α(i). Then

αH 7→ j under T .

Since T is a bijection, |G : H| = |OrbG(i)|,
which proves the theorem.
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Chapter 8:
External Direct Products

(page 150)

Definition:

Let G1, G2, . . . , Gn be a finite collection of groups.

The external direct product of these groups,

written as

G1 ⊕ G2 ⊕ · · · ⊕ Gn,

is the set of all n-tuples for which the i-th

component is an element of Gi and the group

operation on the set of n-tuples is the com-

ponentwise operation, where i-th components

are composed in the group Gi.
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In symbols,

G1 ⊕ · · · ⊕ Gn = {(g1, . . . , gn) : gi ∈ Gi}

where the composition law is

(g1, . . . , gn) · (g′1, . . . , g′n) = (g1g′1, . . . , gng′n).

The composition gig
′
i is formed according to

the group operation of Gi.

Let ei denote the identity element of Gi.

The identity of G1 ⊕ · · · ⊕ Gn is (e1, . . . , en),

which we shorten to (e, . . . , e).

The inverse of (g1, . . . , gn) is (g−1
1 , . . . , g−1

n ).
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Theorem:

The external direct product G1 ⊕ · · · ⊕ Gn is a

group.

Proof:

(Exercise 8.1)
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Example:

The two-dimensional vector space over the re-

als, R2, taken as an additive group, is the ex-

ternal direct product of two copies of R. We

write

R2 = R ⊕ R.

The group operation is componentwise addi-

tion.

Example 1: U(8)⊕ U(10)

U(8)⊕U(10) = {(1,1), (1,3), (1,7), (1,9), (3,1), . . .

. . . , (7,7), (7,9)}

(3,7)(7,9) = (5,3)
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Theorem 8.1: Order of an element in a

Direct Product

The order of an element in a direct product

of a finite number of finite groups is the least

common multiple (LCM) of the orders of the

components of the element. In symbols,

|(g1, g2, . . . , gn)| = lcm(|g1|, |g2|, . . . , |gn|)}.

Compare this to the result by Ruffini (Theorem

5.3) that the order of a permutation written in

disjoint cycle notation is the LCM of the cycle

lengths.
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Proof:

We treat only the case n = 2. The general

case can be done by induction. (Exercise 8.2)

Let (g1, g2) be an arbitrary element of G1⊕G2.

Let

s = lcm(|g1|, |g2|)

and

t = |(g1, g2)|.

We will show that s and t divide each other.
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We know that t divides s, because

(g1, g2)
s = (gs

1, gs
2) = (e, e).

Conversely,

(g1, g2)
t = (e, e) = (gt

1, gt
2),

so |g1| and |g2| divide t, meaning s divides t.

Therefore s = t.
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