MA441: Algebraic Structures I

Lecture 21

17 November 2003

Review from Lecture 20:

Let G be a group of permutations of a set S.

We defined $\operatorname{Stab}_{G}(i)$, the stabilizer of i in G.

We defined $\operatorname{Orb}_{G}(s)$, the orbit of s under G.

Theorem 7.3: Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a set S. Then for any i in S,

$$
|G|=\left|\operatorname{Stab}_{G}(i)\right| \cdot\left|\operatorname{Orb}_{G}(i)\right|
$$

The idea of the proof was to consider the correspondence that maps cosets of $\operatorname{Stab}_{G}(i)$ to the orbit $\operatorname{Orb}_{G}(i)$ via $\phi \operatorname{Stab}_{G}(i) \mapsto \phi(i)$.

We defined the external direct product

$$
G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n}
$$

to be the set of all n-tuples for which the i-th component is an element of G_{i} and the group operation on the set of n-tuples is the componentwise operation, where i-th components are composed in the group G_{i}.

The external direct product of groups is a group.

Theorem 8.1: Order of an element in a Direct Product

The order of an element in a direct product of a finite number of finite groups is the least common multiple (LCM) of the orders of the components of the element. In symbols,

$$
\left.\left|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right|=\operatorname{Icm}\left(\left|g_{1}\right|,\left|g_{2}\right|, \ldots,\left|g_{n}\right|\right)\right\} .
$$

Example 3:

We count the number of elements in $\mathbb{Z} / 25 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z}$ of order 5 .

We want to find elements of the form (a, b) with $a \in \mathbb{Z} / 25 \mathbb{Z}$ and $b \in \mathbb{Z} / 5 \mathbb{Z}$ such that $\operatorname{lcm}(|a|,|b|)=5$.

Question: how many elements of order 5 are there in $\mathbb{Z} / 25 \mathbb{Z}$?

There are 4 elements of order $5(\phi(5)=4)$.

Case 1: $|a|=|b|=5$
There are 4 choices for a and 4 choices for b, total 16.

Case 2: $|a|=5,|b|=1$
There are 4 choices for a, and $b=0$, total 4 .

Case 3: $|a|=1,|b|=5$
There are 4 choices for b, and $a=0$, total 4 .

Grand total: 24 elements of order 5.

Theorem 8.2: Criterion for $G \oplus H$ to be Cyclic

Let G and H be finite cyclic groups. Then $G \oplus H$ is cyclic iff $|G|$ and $|H|$ are relatively prime.

Proof:

Let $|G|=m$ and $|H|=n$, so $|G \oplus H|=m n$.

Assume $G \oplus H$ is cyclic. Show the orders are relatively prime.

Let $d=\operatorname{gcd}(m, n)$ and let (g, h) be a generator for $G \oplus H$. $|(g, h)|=m n$.

Consider $(g, h)^{m n / d}=\left(\left(g^{m}\right)^{n / d},\left(h^{n}\right)^{m / d}\right)=(e, e)$.
Then $m n=|(g, h)| \leq m n / d$, so $d=1$.
Conversely, suppose m and n are relatively prime. We'll show $G \oplus H$ is cyclic.

Choose generators g for G and h for H. That is, $G=\langle g\rangle$ and $H=\langle h\rangle$.

Since $\operatorname{gcd}(m, n)=1, \operatorname{Icm}(m, n)=m n$. Then by Theorem 8.1,

$$
|(g, h)|=\operatorname{Icm}(m, n)=m n=|G \oplus H|,
$$

so $G \oplus H$ is cyclic.

Corollary 1:

An external direct product $G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n}$ is cyclic iff $\left|G_{i}\right|$ and $\left|G_{j}\right|$ are relatively prime for $i \neq j$.

Proof:

By induction, using Theorem 8.2.

Corollary 2:

Let $m=n_{1} \cdot n_{2} \cdots n_{k}$. Then

$$
\mathbb{Z} / m \mathbb{Z} \approx \mathbb{Z} / n_{1} \mathbb{Z} \oplus \mathbb{Z} / n_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / n_{k} \mathbb{Z}
$$

iff n_{i} and n_{j} are relatively prime for $i \neq j$.

Theorem 8.3: $U(n)$ as an External Direct Product

Suppose s and t are relatively prime. Then $U(s t)$ is isomorphic to the external direct product of $U(s)$ and $U(t)$, that is,

$$
U(s t) \approx U(s) \oplus U(t)
$$

Moreover, $U_{s}(s t)$ is isomorphic to $U(t)$ and $U_{t}(s t)$ is isomorphic to $U(s)$.

Recall that $U_{k}(n)$ is the subgroup of $U(n)$ consisting of elements congruent to 1 modulo k.

Proof:

Consider the map $U(s t) \rightarrow U(s) \oplus U(t)$ that sends $x \mapsto(x \bmod s, x \bmod t)$.

Let us verify that this map is an isomorphism.

Well-defined: If x is relatively prime to $s t$, then it is relatively prime to both s and t.

We can choose c, d such that $c s \equiv 1(\bmod t)$ and $d t \equiv 1(\bmod s)$.

Onto: For any (a, b), let $x=a c s+b d t$.

Then $x \bmod t=a c s=a$ and $x \bmod s=b d t=b$.
(This is a special case of the Chinese Remainder Theorem.)

One-to-one: suppose x and y both map to (a, b). Then $x y^{-1}$ maps to $(1,1)$.

So $x y^{-1} \equiv 1(\bmod s)$ and $x y^{-1} \equiv 1(\bmod t)$.
That means $x y^{-1}-1$ is divisible by s and t, so it must be 1 . So $x=y$.

The homomorphism property is clear:
$(x y \bmod s, x y \bmod t)=$
$(x \bmod s, y \bmod s) \cdot(x \bmod t, y \bmod t)$.

Corollary:

Let $m=n_{1} \cdot n_{2} \cdots n_{k}$, where $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Then

$$
U(m) \approx U\left(n_{1}\right) \oplus \cdots \oplus U\left(n_{k}\right) .
$$

Example:

$U(105) \approx U(7) \oplus U(15)$
$U(105) \approx U(21) \oplus U(5)$
$U(105) \approx U(3) \oplus U(5) \oplus U(7)$

Chapter 9: Normal Subgroups and Factor Groups

(page 172)

Definition:

A subgroup H of a group G is called a normal subgroup if $a H=H a$ for all $a \in G$.

We denote this by $H \triangleleft G$.

Theorem 9.1: Normal Subgroup Test

A subgroup H of G is normal in G iff $x H x^{-1} \subseteq H$ for all $x \in G$.

Proof:

If $H \triangleleft G$, then for any $x \in G, h \in H$, there is an $h^{\prime} \in H$ such that $x h=h^{\prime} x$.

Thus $x h x^{-1}=h^{\prime} \in H$, so $x H x^{-1} \subseteq H$.

Conversely, suppose $x H x^{-1} \subseteq H$. We want to show that $a H=H a$ for any $a \in G$.

Letting $x=a$, we have $a H a^{-1} \subseteq H$, so $a H \subseteq H a$.

By letting $x=a^{-1}$, we have $a^{-1} H a \subseteq H$, so $H a \subseteq a H$.

Therefore $a H=H a$.

Homework Assignment 11

Reading Assignment

Chapter 8

Chapter 9: 172-174

Homework Problems:

Chapter 8: 2, 4, 5, 10

Chapter 9: 1, 3

