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Review from Lecture 20:

Let G be a group of permutations of a set S.

We defined StabG(i), the stabilizer of i in G.

We defined OrbG(s), the orbit of s under G.
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Theorem 7.3: Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a

set S. Then for any i in S,

|G| = |StabG(i)| · |OrbG(i)|.

The idea of the proof was to consider the cor-

respondence that maps cosets of StabG(i) to

the orbit OrbG(i) via φStabG(i) 7→ φ(i).
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We defined the external direct product

G1 ⊕G2 ⊕ · · · ⊕Gn

to be the set of all n-tuples for which the i-th

component is an element of Gi and the group

operation on the set of n-tuples is the com-

ponentwise operation, where i-th components

are composed in the group Gi.

The external direct product of groups is a group.
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Theorem 8.1: Order of an element in a

Direct Product

The order of an element in a direct product

of a finite number of finite groups is the least

common multiple (LCM) of the orders of the

components of the element. In symbols,

|(g1, g2, . . . , gn)| = lcm(|g1|, |g2|, . . . , |gn|)}.
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Example 3:

We count the number of elements in

Z/25Z⊕ Z/5Z of order 5.

We want to find elements of the form (a, b)

with a ∈ Z/25Z and b ∈ Z/5Z such that

lcm(|a|, |b|) = 5.

Question: how many elements of order 5 are

there in Z/25Z?
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There are 4 elements of order 5 (φ(5) = 4).

Case 1: |a| = |b| = 5

There are 4 choices for a and 4 choices for b,

total 16.

Case 2: |a| = 5, |b| = 1

There are 4 choices for a, and b = 0, total 4.

Case 3: |a| = 1, |b| = 5

There are 4 choices for b, and a = 0, total 4.

Grand total: 24 elements of order 5.
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Theorem 8.2: Criterion for G ⊕ H to be

Cyclic

Let G and H be finite cyclic groups. Then

G ⊕ H is cyclic iff |G| and |H| are relatively

prime.

Proof:

Let |G| = m and |H| = n, so |G⊕H| = mn.

Assume G ⊕ H is cyclic. Show the orders are

relatively prime.

Let d = gcd(m, n) and let (g, h) be a generator

for G⊕H. |(g, h)| = mn.
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Consider (g, h)mn/d = ((gm)n/d, (hn)m/d) = (e, e).

Then mn = |(g, h)| ≤ mn/d, so d = 1.

Conversely, suppose m and n are relatively prime.

We’ll show G⊕H is cyclic.

Choose generators g for G and h for H. That

is, G = 〈g〉 and H = 〈h〉.

Since gcd(m, n) = 1, lcm(m, n) = mn. Then

by Theorem 8.1,

|(g, h)| = lcm(m, n) = mn = |G⊕H|,

so G⊕H is cyclic.

9



Corollary 1:

An external direct product G1 ⊕ G2 ⊕ · · · ⊕ Gn

is cyclic iff |Gi| and |Gj| are relatively prime for

i 6= j.

Proof:

By induction, using Theorem 8.2.

Corollary 2:

Let m = n1 · n2 · · ·nk. Then

Z/mZ ≈ Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nkZ

iff ni and nj are relatively prime for i 6= j.
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Theorem 8.3: U(n) as an External Direct

Product

Suppose s and t are relatively prime. Then

U(st) is isomorphic to the external direct prod-

uct of U(s) and U(t), that is,

U(st) ≈ U(s)⊕ U(t).

Moreover, Us(st) is isomorphic to U(t) and Ut(st)

is isomorphic to U(s).

Recall that Uk(n) is the subgroup of U(n) con-

sisting of elements congruent to 1 modulo k.
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Proof:

Consider the map U(st) → U(s) ⊕ U(t) that

sends x 7→ (x mod s, x mod t).

Let us verify that this map is an isomorphism.

Well-defined: If x is relatively prime to st, then

it is relatively prime to both s and t.

We can choose c, d such that cs ≡ 1 (mod t)

and dt ≡ 1 (mod s).
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Onto: For any (a, b), let x = acs + bdt.

Then x mod t = acs = a and

x mod s = bdt = b.

(This is a special case of the

Chinese Remainder Theorem.)
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One-to-one: suppose x and y both map to

(a, b). Then xy−1 maps to (1,1).

So xy−1 ≡ 1 (mod s) and xy−1 ≡ 1 (mod t).

That means xy−1− 1 is divisible by s and t, so

it must be 1. So x = y.

The homomorphism property is clear:

(xy mod s, xy mod t) =

(x mod s, y mod s) · (x mod t, y mod t).
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Corollary:

Let m = n1 ·n2 · · ·nk, where gcd(ni, nj) = 1 for

i 6= j. Then

U(m) ≈ U(n1)⊕ · · · ⊕ U(nk).

Example:

U(105) ≈ U(7)⊕ U(15)

U(105) ≈ U(21)⊕ U(5)

U(105) ≈ U(3)⊕ U(5)⊕ U(7)

15



Chapter 9: Normal Subgroups and
Factor Groups

(page 172)

Definition:

A subgroup H of a group G is called a normal

subgroup if aH = Ha for all a ∈ G.

We denote this by H C G.
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Theorem 9.1: Normal Subgroup Test

A subgroup H of G is normal in G iff

xHx−1 ⊆ H for all x ∈ G.

Proof:

If H C G, then for any x ∈ G, h ∈ H, there is an

h′ ∈ H such that xh = h′x.

Thus xhx−1 = h′ ∈ H, so xHx−1 ⊆ H.

Conversely, suppose xHx−1 ⊆ H. We want to

show that aH = Ha for any a ∈ G.
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Letting x = a, we have aHa−1 ⊆ H, so

aH ⊆ Ha.

By letting x = a−1, we have a−1Ha ⊆ H, so

Ha ⊆ aH.

Therefore aH = Ha.
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Homework Assignment 11

Reading Assignment

Chapter 8

Chapter 9: 172–174

Homework Problems:

Chapter 8: 2, 4, 5, 10

Chapter 9: 1, 3
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