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Review from Lecture 21:

Theorem 8.2: Criterion for G ⊕ H to be

Cyclic

Let G and H be finite cyclic groups. Then

G ⊕ H is cyclic iff |G| and |H| are relatively

prime.

Corollary 1:

An external direct product G1 ⊕ G2 ⊕ · · · ⊕ Gn

is cyclic iff |Gi| and |Gj| are relatively prime for

i 6= j.
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Theorem 8.3: U(n) as an External Direct

Product

Suppose s and t are relatively prime. Then

U(st) is isomorphic to the external direct prod-

uct of U(s) and U(t), that is,

U(st) ≈ U(s)⊕ U(t).

Moreover, Us(st) is isomorphic to U(t) and Ut(st)

is isomorphic to U(s).
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To prove this, we defined a map

U(st) → U(s)⊕ U(t)

that sends

x 7→ (x mod s, x mod t).

We found c, d such that cs ≡ 1 (mod t) and

dt ≡ 1 (mod s).

For any (a, b), x = acs + bdt ∈ U(st) maps to

(a, b).
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Corollary:

Let m = n1 ·n2 · · ·nk, where gcd(ni, nj) = 1 for

i 6= j. Then

U(m) ≈ U(n1)⊕ · · · ⊕ U(nk).
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Chapter 9: Normal Subgroups and
Factor Groups

(page 172)

Definition:

A subgroup H of a group G is called a normal

subgroup if aH = Ha for all a ∈ G.

We denote this by H C G.
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Theorem 9.1: Normal Subgroup Test

A subgroup H of G is normal in G iff

xHx−1 ⊆ H for all x ∈ G.

Proof:

If H C G, then for any x ∈ G, h ∈ H, there is an

h′ ∈ H such that xh = h′x.

Thus xhx−1 = h′ ∈ H, so xHx−1 ⊆ H.

Conversely, suppose xHx−1 ⊆ H. We want to

show that aH = Ha for any a ∈ G.
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Letting x = a, we have aHa−1 ⊆ H, so

aH ⊆ Ha.

By letting x = a−1, we have a−1Ha ⊆ H, so

Ha ⊆ aH.

Therefore aH = Ha.
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Example 1:

Every subgroup of an Abelian group is normal.

In fact, ah = ha for any a ∈ G, any h ∈ H.

Example 2:

Z(G) C G by the same reasoning.

Example 3:

An C Sn. Let β be an odd permutation. Then

βAn = Anβ are both equal to the coset of all

odd permutations. For example,

(12)(123) ∈ (12)A3 equals (132)(12) ∈ A3(12).
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Definition:

For H C G, the set of left (or right) cosets of

H in G is a group called the quotient group

(or factor group) of G by H.

We denote this group by G/H.

Theorem 9.2:

Let H C G. The set G/H is a group under the

operation (aH)(bH) = abH.
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Proof:

We must show that

1. the operation is well-defined,

2. G/H is closed under the operation,

3. G/H has an identity,

4. G/H has inverses, and

5. the operation is associative.
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We must show that the map from

G/H × G/H → G/H via (aH, bH) 7→ abH is a

well-defined function.

That is, the image abH is the same no mat-

ter how we pick coset representatives for the

cosets aH and bH.

Suppose aH = a′H and bH = b′H.

Then a′ = ah1 and b′ = bh2.

a′b′H = (ah1)(bh2)H = (ah1)bH by absorbing

h2.
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Since H C G, bH = Hb.

(ah1)bH = (ah1)Hb = aHb by absorbing h1.

Then again by normality,

aHb = abH. So the function is well-defined.

Clearly G/H is closed under the group opera-

tion since abH is again a coset of H.

eH = H is the identity.

a−1H is the inverse of aH. Check (aH)(a−1H) =

(a−1H)(aH) = aa−1H = H
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To show associativity, consider a product of

three cosets aH, bH, and cH.

(aHbH)cH = (abH)(cH) = (ab)(HcH) = (ab)(cH) =

((ab)c)H = abcH.

aH(bHcH) = aH(bcH) = a(H(bc)H) = a(bc)H =

abcH.

Essentially, we’re using normality to bring the

elements a, b, c together, and then applying the

associativity of the group operation of G.

14



Example 7:

Let 4Z = {0,±4,±8, . . .}.

The cosets are 0 + 4Z,1 + 4Z,2 + 4Z,3 + 4Z.

Z/4Z ≈ Z4.

More generally, Z/nZ ≈ Zn.
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Note: Let H C G.

|aH| could mean the size of the coset aH, the

number of elements it contains. It could also

mean the order of aH in the quotient group

G/H. The meaning should always be clear

from context.
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Theorem 9.3:

Let G be a group with center Z(G). If G/Z(G)

is cyclic, then G is Abelian.

Proof:

Let g ∈ G be such that gZ(G) generates G/Z(G).

For any a, b ∈ G, let

aZ(G) = (gZ(G))i = giZ(G),

and let

bZ(G) = (gZ(G))j = gjZ(G).
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Then a = gix and b = gjy, ∃x, y ∈ Z(G).

Then ab = (gix)(gjy) = gi+jxy = ba.
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Theorem 9.4:

For any group G, G/Z(G) ≈ Inn(G).

Theorem 9.5: Cauchy’s Theorem (Abelian)

Let G be a finite Abelian group and let p be a

prime that divides the order of G. Then G has

an element of order p.
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Homework Assignment 12

Reading Assignment

Chapter 9: all

Homework Problems:

Chapter 8: 14, 15, 22

Chapter 9: 1, 3, 4, 7, 12
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