MA441: Algebraic Structures I
 Lecture 22

24 November 2003

Review from Lecture 21:

Theorem 8.2: Criterion for $G \oplus H$ to be Cyclic

Let G and H be finite cyclic groups. Then $G \oplus H$ is cyclic iff $|G|$ and $|H|$ are relatively prime.

Corollary 1:

An external direct product $G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n}$ is cyclic iff $\left|G_{i}\right|$ and $\left|G_{j}\right|$ are relatively prime for $i \neq j$.

Theorem 8.3: $U(n)$ as an External Direct Product

Suppose s and t are relatively prime. Then $U(s t)$ is isomorphic to the external direct product of $U(s)$ and $U(t)$, that is,

$$
U(s t) \approx U(s) \oplus U(t) .
$$

Moreover, $U_{s}(s t)$ is isomorphic to $U(t)$ and $U_{t}(s t)$ is isomorphic to $U(s)$.

To prove this, we defined a map

$$
U(s t) \rightarrow U(s) \oplus U(t)
$$

that sends
$x \mapsto(x \bmod s, x \bmod t)$.

We found c, d such that $c s \equiv 1(\bmod t)$ and $d t \equiv 1(\bmod s)$.

For any $(a, b), x=a c s+b d t \in U(s t)$ maps to (a, b).

Corollary:

Let $m=n_{1} \cdot n_{2} \cdots n_{k}$, where $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Then

$$
U(m) \approx U\left(n_{1}\right) \oplus \cdots \oplus U\left(n_{k}\right) .
$$

Chapter 9: Normal Subgroups and Factor Groups

(page 172)

Definition:

A subgroup H of a group G is called a normal subgroup if $a H=H a$ for all $a \in G$.

We denote this by $H \triangleleft G$.

Theorem 9.1: Normal Subgroup Test

A subgroup H of G is normal in G iff $x H x^{-1} \subseteq H$ for all $x \in G$.

Proof:

If $H \triangleleft G$, then for any $x \in G, h \in H$, there is an $h^{\prime} \in H$ such that $x h=h^{\prime} x$.

Thus $x h x^{-1}=h^{\prime} \in H$, so $x H x^{-1} \subseteq H$.

Conversely, suppose $x H x^{-1} \subseteq H$. We want to show that $a H=H a$ for any $a \in G$.

Letting $x=a$, we have $a H a^{-1} \subseteq H$, so $a H \subseteq H a$.

By letting $x=a^{-1}$, we have $a^{-1} H a \subseteq H$, so $H a \subseteq a H$.

Therefore $a H=H a$.

Example 1:

Every subgroup of an Abelian group is normal. In fact, $a h=h a$ for any $a \in G$, any $h \in H$.

Example 2:

$Z(G) \triangleleft G$ by the same reasoning.

Example 3:

$A_{n} \triangleleft S_{n}$. Let β be an odd permutation. Then $\beta A_{n}=A_{n} \beta$ are both equal to the coset of all odd permutations. For example, $(12)(123) \in(12) A_{3}$ equals $(132)(12) \in A_{3}(12)$.

Definition:

For $H \triangleleft G$, the set of left (or right) cosets of H in G is a group called the quotient group (or factor group) of G by H.

We denote this group by G / H.

Theorem 9.2:

Let $H \triangleleft G$. The set G / H is a group under the operation $(a H)(b H)=a b H$.

Proof:

We must show that

1. the operation is well-defined,
2. G / H is closed under the operation,
3. G / H has an identity,
4. G / H has inverses, and
5. the operation is associative.

We must show that the map from
$G / H \times G / H \rightarrow G / H$ via $(a H, b H) \mapsto a b H$ is a well-defined function.

That is, the image $a b H$ is the same no matter how we pick coset representatives for the cosets $a H$ and $b H$.

Suppose $a H=a^{\prime} H$ and $b H=b^{\prime} H$.
Then $a^{\prime}=a h_{1}$ and $b^{\prime}=b h_{2}$.
$a^{\prime} b^{\prime} H=\left(a h_{1}\right)\left(b h_{2}\right) H=\left(a h_{1}\right) b H$ by absorbing h_{2}.

Since $H \triangleleft G, b H=H b$.
$\left(a h_{1}\right) b H=\left(a h_{1}\right) H b=a H b$ by absorbing h_{1}.

Then again by normality, $a H b=a b H$. So the function is well-defined.

Clearly G / H is closed under the group operation since $a b H$ is again a coset of H.
$e H=H$ is the identity.
$a^{-1} H$ is the inverse of $a H$. Check $(a H)\left(a^{-1} H\right)=$ $\left(a^{-1} H\right)(a H)=a a^{-1} H=H$

To show associativity, consider a product of three cosets $a H, b H$, and $c H$.
$(a H b H) c H=(a b H)(c H)=(a b)(H c H)=(a b)(c H)=$ $((a b) c) H=a b c H$.
$a H(b H c H)=a H(b c H)=a(H(b c) H)=a(b c) H=$ $a b c H$.

Essentially, we're using normality to bring the elements a, b, c together, and then applying the associativity of the group operation of G.

Example 7:

Let $4 \mathbb{Z}=\{0, \pm 4, \pm 8, \ldots\}$.

The cosets are $0+4 \mathbb{Z}, 1+4 \mathbb{Z}, 2+4 \mathbb{Z}, 3+4 \mathbb{Z}$.
$\mathbb{Z} / 4 \mathbb{Z} \approx Z_{4}$.

More generally, $\mathbb{Z} / n \mathbb{Z} \approx Z_{n}$.

Note: Let $H \triangleleft G$.
$|a H|$ could mean the size of the coset $a H$, the number of elements it contains. It could also mean the order of $a H$ in the quotient group G / H. The meaning should always be clear from context.

Theorem 9.3:

Let G be a group with center $Z(G)$. If $G / Z(G)$ is cyclic, then G is Abelian.

Proof:

Let $g \in G$ be such that $g Z(G)$ generates $G / Z(G)$.

For any $a, b \in G$, let

$$
a Z(G)=(g Z(G))^{i}=g^{i} Z(G),
$$

and let

$$
b Z(G)=(g Z(G))^{j}=g^{j} Z(G) .
$$

Then $a=g^{i} x$ and $b=g^{j} y, \exists x, y \in Z(G)$.

Then $a b=\left(g^{i} x\right)\left(g^{j} y\right)=g^{i+j} x y=b a$.

Theorem 9.4:
For any group $G, G / Z(G) \approx \operatorname{Inn}(G)$.
Theorem 9.5: Cauchy's Theorem (Abelian) Let G be a finite Abelian group and let p be a prime that divides the order of G. Then G has an element of order p.

Homework Assignment 12

Reading Assignment

Chapter 9: all

Homework Problems:

Chapter 8: 14, 15, 22

Chapter 9: 1, 3, 4, 7, 12

