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Review from Lecture 22:

Definition:

A subgroup H of a group G is called a normal
subgroup if aH = Ha for all a € G.

We denote this by H < G.

Theorem 9.1: Normal Subgroup Test

A subgroup H of G is normal in G iff
rHx—1 C H for all z € G.



Definition:

For H < G, the set of left (or right) cosets of
H in G is a group called the quotient group
(or factor group) of G by H.

We denote this group by G/H.
Theorem 9.2:

Let H<G. The set G/H is a group under the
operation (aH)(bH) = abH.



Example 11:
Let G =U(32) =1{1,3,5,7,...,27,29,31}.

Let H = U14(32) = {1,17}. (17 =1 (mod 16))
G/H is abelian of order 16/2 = 8.

In Chapter 11, we'll learn about the Funda-
mental Theorem of Abelian Groups. This the-
orem tells us that an abelian group of order 8
must be isomorphic to Zg, Z4 & Zo, or

Zo B Zo B Zs.

Which of these three direct products is isomor-
phic to G/H?



We will determine the elements of G/H and
their orders.

1H = {1,17}, 3H = {3,19}, 5H = {5,21}
7H = {7,23}, 9H = {9,25}, 11H = {11,27}
13H = {13,29}, 15H = {15,31}.

We can rule out Zo® Zo® Zo, because (3H)? =
OH, so |3H| > 4.

Now (7H)?2 = (9H)? = H, so these are two
distinct elements with order 2. This rules out
Zg, which has only one element of order 2.

Therefore, U(32)/U16(32) = Z4 & Z>, which is
isomorphic to U(16).



Theorem 9.3:

Let G be a group with center Z(G). If G/Z(G)
is cyclic, then G is Abelian.

Proof:
Let g € G be such that gZ(G) generates G/Z(G).
For any a,b € G, let

aZ(G) = (9Z(G))" = ¢'2(G),
and let

bZ(G) = (9Z(R)) = ¢/ Z(G).



Then a = g'x and b= ¢Jy, Jz,y € Z(Q).

Since z,y commute with everything, and ¢
commutes with ¢/, we see that

ab = (¢'z) (¢’y) = g'Tzy = (¢7y) (¢'x) = ba.

Since the a,b were arbitrary, we have that G is
abelian.



Theorem 9.4:
For any group G, G/Z(G) =~ Inn(G).

Proof:
Define the map T : G/Z(G) — Inn(G) via
97 (G) Gg-

(We'll use Gallian’'s definition of inner auto-
morphism: ¢g4(z) = gxg—1.)

We need to show that T is a well-defined func-
tion, that is one-to-one, onto, and preserves
the group operation.



To show that T is well-defined, suppose ¢Z(G) =
hZ(G). We'll show that both cosets map to
the same inner automorphism.

Now ¢Z(G) = hZ(GR) implies h=1g € Z(Q).
Then for all z € G, h1gz = zh~1g.

By multiplying on the left by Ah and on the right
by ¢~ 1, we have gzg~1 = hah 1.

Therefore ¢g = ¢y,.



One-to-one: reverse the argument. ¢4 = ¢
implies ¢Z(G) = hZ(G).

Onto: by definition of T. For any ¢4, the coset
gZ(@G) is a preimage under T'.

Group operation:
T(9Z(G) - hZ(G)) = T(ghZ(G)) = ¢gp-
T(9Z(G)) o T(hZ(G)) = ¢go ¢ = dgh-

(Recall: ¢godp(x) = ¢g(hzh™1) = (gh)xz(gh)~1.)
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Example 14:
Consider Dg. The center Z(D6) = {Ro,ngo}
has order 2. Thus |Dg/Z(Dg)| = 12/2 = 6.

By Theorem 7.2 (classification of groups of
order 2p), we know Inn(Dg) ~ D3 or = Zg.

If Inn(Dg) ~ Zg, then Dg would have to be
abelian.

So Inn(Dg) must be isomorphic to Ds.
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Theorem 9.5: Cauchy’s Theorem (Abelian)
Let G be a finite Abelian group and let p be a
prime that divides the order of G. Then G has
an element of order p.

Proof:
Apply strong induction on the order of G.

This is clearly true for the |G| = 2.

Assume that the theorem is true for all groups
with fewer elements than G. We will show the
theorem is true for G.
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(G has elements of prime order. Choose any
x € G. Suppose |x| = m = ¢gn, for q prime.
Then |z"] = q.

Let x be an element of prime order q.

If ¢ = p, then we're done. Otherwise, consider
the cyclic subgroup (x), which is normal in G
since G is abelian.

The factor group G/{(x) is abelian, and has or-
der |G|/q. Since p divides |G|/q, we can apply
induction to get a y(x) € G/H of order p.

Now apply Exercise 57 to get an element of G
of order p.
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Internal Direct Products

Notation: for subgroups H, K < G,
HK = {hklh € Hk € K}.

Definition:

We say that &G is the internal direct product
of H and K and write G = H x K

if H K <G and

G=HK and HN K = {e}.

14



Theorem 9.6

If a group G is the internal direct product of
a finite number of subgroups Hqy, Ho,..., Hy,
then G is isomorphic to the external direct
product of Hq,H»,..., Hy.
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Chapter 10: Group Homomorphisms
(page 194)

Definition:

A homomorphism ¢ from a group G71 to a
group G» is a mapping from G71 to G5, that
preserves the group operation; that is, for all
a,b e qG,

¢(ab) = ¢(a)P(b).
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Homework Assignment 13

Reading Assignment

Chapter 9: all

Chapter 10: 194—198

Homework Problems:

Chapter 8: 29

Chapter 9: 15, 18, 31, 57, 58

Chapter 10: 1, 2, 3, 4
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