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Review from Lecture 22:

Definition:

A subgroup H of a group G is called a normal

subgroup if aH = Ha for all a ∈ G.

We denote this by H C G.

Theorem 9.1: Normal Subgroup Test

A subgroup H of G is normal in G iff

xHx−1 ⊆ H for all x ∈ G.
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Definition:

For H C G, the set of left (or right) cosets of

H in G is a group called the quotient group

(or factor group) of G by H.

We denote this group by G/H.

Theorem 9.2:

Let H C G. The set G/H is a group under the

operation (aH)(bH) = abH.
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Example 11:

Let G = U(32) = {1,3,5,7, . . . ,27,29,31}.

Let H = U16(32) = {1,17}. (17 ≡ 1 (mod 16))

G/H is abelian of order 16/2 = 8.

In Chapter 11, we’ll learn about the Funda-

mental Theorem of Abelian Groups. This the-

orem tells us that an abelian group of order 8

must be isomorphic to Z8, Z4 ⊕ Z2, or

Z2 ⊕ Z2 ⊕ Z2.

Which of these three direct products is isomor-

phic to G/H?
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We will determine the elements of G/H and

their orders.

1H = {1,17}, 3H = {3,19}, 5H = {5,21}
7H = {7,23}, 9H = {9,25}, 11H = {11,27}
13H = {13,29}, 15H = {15,31}.

We can rule out Z2⊕Z2⊕Z2, because (3H)2 =

9H, so |3H| ≥ 4.

Now (7H)2 = (9H)2 = H, so these are two

distinct elements with order 2. This rules out

Z8, which has only one element of order 2.

Therefore, U(32)/U16(32) ≈ Z4 ⊕ Z2, which is

isomorphic to U(16).
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Theorem 9.3:

Let G be a group with center Z(G). If G/Z(G)

is cyclic, then G is Abelian.

Proof:

Let g ∈ G be such that gZ(G) generates G/Z(G).

For any a, b ∈ G, let

aZ(G) = (gZ(G))i = giZ(G),

and let

bZ(G) = (gZ(G))j = gjZ(G).

6



Then a = gix and b = gjy, ∃x, y ∈ Z(G).

Since x, y commute with everything, and gi

commutes with gj, we see that

ab = (gix)(gjy) = gi+jxy = (gjy)(gix) = ba.

Since the a, b were arbitrary, we have that G is

abelian.
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Theorem 9.4:

For any group G, G/Z(G) ≈ Inn(G).

Proof:

Define the map T : G/Z(G) → Inn(G) via

gZ(G) 7→ φg.

(We’ll use Gallian’s definition of inner auto-

morphism: φg(x) = gxg−1.)

We need to show that T is a well-defined func-

tion, that is one-to-one, onto, and preserves

the group operation.
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To show that T is well-defined, suppose gZ(G) =

hZ(G). We’ll show that both cosets map to

the same inner automorphism.

Now gZ(G) = hZ(G) implies h−1g ∈ Z(G).

Then for all x ∈ G, h−1gx = xh−1g.

By multiplying on the left by h and on the right

by g−1, we have gxg−1 = hxh−1.

Therefore φg = φh.
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One-to-one: reverse the argument. φg = φh

implies gZ(G) = hZ(G).

Onto: by definition of T . For any φg, the coset

gZ(G) is a preimage under T .

Group operation:

T (gZ(G) · hZ(G)) = T (ghZ(G)) = φgh.

T (gZ(G)) ◦ T (hZ(G)) = φg ◦ φh = φgh.

(Recall: φg◦φh(x) = φg(hxh−1) = (gh)x(gh)−1.)
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Example 14:

Consider D6. The center Z(D6) = {R0, R180}
has order 2. Thus |D6/Z(D6)| = 12/2 = 6.

By Theorem 7.2 (classification of groups of

order 2p), we know Inn(D6) ≈ D3 or ≈ Z6.

If Inn(D6) ≈ Z6, then D6 would have to be

abelian.

So Inn(D6) must be isomorphic to D3.
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Theorem 9.5: Cauchy’s Theorem (Abelian)

Let G be a finite Abelian group and let p be a

prime that divides the order of G. Then G has

an element of order p.

Proof:

Apply strong induction on the order of G.

This is clearly true for the |G| = 2.

Assume that the theorem is true for all groups

with fewer elements than G. We will show the

theorem is true for G.
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G has elements of prime order. Choose any

x ∈ G. Suppose |x| = m = qn, for q prime.

Then |xn| = q.

Let x be an element of prime order q.

If q = p, then we’re done. Otherwise, consider

the cyclic subgroup 〈x〉, which is normal in G

since G is abelian.

The factor group G/〈x〉 is abelian, and has or-

der |G|/q. Since p divides |G|/q, we can apply

induction to get a y〈x〉 ∈ G/H of order p.

Now apply Exercise 57 to get an element of G

of order p.
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Internal Direct Products

Notation: for subgroups H, K < G,

HK = {hk|h ∈ H, k ∈ K}.

Definition:

We say that G is the internal direct product

of H and K and write G = H ×K

if H, K C G and

G = HK and H ∩K = {e}.
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Theorem 9.6

If a group G is the internal direct product of

a finite number of subgroups H1, H2, . . . , Hn,

then G is isomorphic to the external direct

product of H1, H2, . . . , Hn.
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Chapter 10: Group Homomorphisms

(page 194)

Definition:

A homomorphism φ from a group G1 to a

group G2 is a mapping from G1 to G2 that

preserves the group operation; that is, for all

a, b ∈ G,

φ(ab) = φ(a)φ(b).
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Homework Assignment 13

Reading Assignment

Chapter 9: all

Chapter 10: 194–198

Homework Problems:

Chapter 8: 29

Chapter 9: 15, 18, 31, 57, 58

Chapter 10: 1, 2, 3, 4
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