MA441: Algebraic Structures I

Lecture 24

3 December 2003

Review from Lecture 23:

Theorem 9.3:
Let G be a group with center $Z(G)$. If $G / Z(G)$ is cyclic, then G is Abelian.

Theorem 9.4:
For any group $G, G / Z(G) \approx \operatorname{Inn}(G)$.

Theorem 9.5: Cauchy's Theorem (Abelian) Let G be a finite Abelian group and let p be a prime that divides the order of G. Then G has an element of order p.

Internal Direct Products

Notation: for subgroups $H, K<G$, $H K=\{h k \mid h \in H, k \in K\}$.

Definition:

We say that G is the internal direct product of H and K and write $G=H \times K$
if $H, K \triangleleft G$ and
$G=H K$ and $H \cap K=\{e\}$.

Definition:

Let $H_{1}, H_{2}, \ldots, H_{n}$ be a finite collection of normal subgroups of G. We say that G is the internal direct product of $H_{1}, H_{2}, \ldots, H_{n}$ and write

$$
G=H_{1} \times H_{2} \times \cdots \times H_{n}
$$

if the following two conditions hold:

1. $G=H_{1} H_{2} \cdots H_{n}=\left\{h_{1} h_{2} \cdots h_{n} \mid h_{i} \in H_{i}\right\}$,
2. $\left(H_{1} H_{2} \cdots H_{i}\right) \cap H_{i+1}=\{e\}(i=1, \ldots, n-1)$.

Note:

For the internal direct product $H \times K$, both H and K must be normal subgroups of the same group. For the external direct product, H and K can be any groups.

Theorem 9.6

If a group G is the internal direct product of a finite number of subgroups $H_{1}, H_{2}, \ldots, H_{n}$, then G is isomorphic to the external direct product of $H_{1}, H_{2}, \ldots, H_{n}$.
(We skip the proof.)

Chapter 10: Group Homomorphisms

 (page 194)Definition:
A homomorphism ϕ from a group G_{1} to a group G_{2} is a mapping from G_{1} to G_{2} that preserves the group operation; that is, for all $a, b \in G$,

$$
\phi(a b)=\phi(a) \phi(b) .
$$

The term homomorphism comes from the Greek words "homo" (like) and "morphe" (form).

There is no requirement for a homomorphism to be one-to-one or onto.

Note: A monomorphism is a one-to-one homomorphism. An epimorphism is an onto homomorphism. And of course, an isomorphism is a homomorphism that is both one-to-one and onto.

An endomorphism of a group is a homomorphism from a group to itself. An automorphism is an endomorphism that is also an isomorphism.

Definition:

The kernel of a homomorphism $\phi: G_{1} \rightarrow G_{2}$ is the set $\{x \in G \mid \phi(x)=e\}$.

We denote the kernel of ϕ by $\operatorname{Ker} \phi$.

Example 1:

The kernel of an isomorphism is the trivial group $\{e\}$.

Example 2:

Let \mathbb{R}^{*} be the group of nonzero real numbers under multiplication. The determinant mapping $A \mapsto \operatorname{det} A$ is a homomorphism from $G L(2, \mathbb{R})$ to \mathbb{R}^{*}.

The kernel of the determinant mapping is the special linear group $\operatorname{SL}(2, \mathbb{R})$, consisting of determinant 1 matrices.

Example 4:

Let $\mathbb{R}[x]$ denote the group of all polynomials with real coefficients under addition. For any $f \in \mathbb{R}[x]$, let f^{\prime} denote the derivative of f. Then the derivative $\operatorname{map} f \mapsto f^{\prime}$ is an endomorphism of $\mathbb{R}[x]$ whose kernel is the set of all constant polynomials.

Example 5:

The mapping ϕ from \mathbb{Z} to $\mathbb{Z} / n \mathbb{Z}$ defined by $\phi(m)=r$, where r is the remainder of m divided by n. That is, $\phi(m)=(m \bmod n)$. The kernel is $\langle n\rangle$.

Theorem 10.1

Let $\phi: G_{1} \rightarrow G_{2}$ be a homomorphism. Let g be in G. Then

1. ϕ sends the identity of G_{1} to the identity of G_{2}.
2. $\phi\left(g^{n}\right)=\phi(g)^{n}(\forall n \in \mathbb{Z})$
3. If $|g|$ is finite, then $|\phi(g)|$ divides $|g|$.
4. $\operatorname{Ker} \phi<G$.
5. If $\phi\left(g_{1}\right)=g_{2}$, then

$$
\phi^{-1}\left(g_{2}\right)=\left\{x \in G_{1} \mid \phi(x)=g_{2}\right\}=g_{1} \cdot \operatorname{Ker} \phi
$$

Proof:

Parts 1 and 2 are the same as we proved before for isomorphisms.

Part 3: $|\phi(g)|$ divides $|g|$.

Let $n=|g|$. Then $\phi(g)^{n}=\phi\left(g^{n}\right)=e$.

Part 4: $\operatorname{Ker} \phi<G$.

We know the kernel is not empty since it contains the identity.

Two-step subgroup test:
For any $a, b \in \operatorname{Ker} \phi$, we have $\phi(a b)=\phi(a) \phi(b)=$ $e e=e$, so $a b \in \operatorname{Ker} \phi$.
For inverses, we have $e=\phi\left(a a^{-1}\right)=\phi(a) \phi\left(a^{-1}\right)=$ $e \phi\left(a^{-1}\right)$, so $\phi\left(a^{-1}\right)=e$ and $a^{-1} \in \operatorname{Ker} \phi$.

Part 5: If $\phi\left(g_{1}\right)=g_{2}$, then
$\phi^{-1}\left(g_{2}\right)=\left\{x \in G_{1} \mid \phi(x)=g_{2}\right\}=g_{1} \cdot \operatorname{Ker} \phi$.
We will show containment in both directions.
First, $\phi^{-1}\left(g_{2}\right) \subseteq g_{1} \cdot \operatorname{Ker} \phi$.
Let $x \in \phi^{-1}\left(g_{2}\right)$, so $\phi(x)=g_{2}=\phi\left(g_{1}\right) \cdot \phi\left(g_{1}^{-1} x\right)=$ $g_{2}^{-1} g_{2}=e$. Then $g_{1}^{-1} x \in \operatorname{Ker} \phi$, so $x \in g_{1} \operatorname{Ker} \phi$.

Second, $g_{1} \cdot \operatorname{Ker} \phi \subseteq \phi^{-1}\left(g_{2}\right)$.

Let $x \in g_{1} \cdot \operatorname{Ker} \phi$, that is, $x=g_{1} k$, for some $k \in \operatorname{Ker} \phi$. Then $\phi(x)=\phi\left(g_{1} k\right)=\phi\left(g_{1}\right) \phi(k)=$ $g_{2} \cdot e=g_{2}$, so $x \in \phi^{-1}\left(g_{2}\right)$.

Theorem 10.2:

Let $\phi: G_{1} \rightarrow G_{2}$ be a homomorphism and let $H<G_{1}$. We have the following properties:

1. $\phi(H)=\{\phi(h) \mid h \in H\}$ is a subgroup of G_{2}.
2. If H is cyclic, then $\phi(H)$ is cyclic.
3. If H is Abelian, then $\phi(H)$ is Abelian.
4. If $H \triangleleft G_{1}$, then $\phi(H) \triangleleft \phi\left(G_{1}\right)$.
5. If $|\operatorname{Ker} \phi|=n$, then ϕ is an n-to-one mapping from G_{1} onto $\phi\left(G_{1}\right)$.
6. If $|H|=n$, then $|\phi(H)|$ divides n.
7. If $K<G_{2}$, then $\phi^{-1}(K)<G_{1}$.
8. If $K \triangleleft G_{2}$, then $\phi^{-1}(K) \triangleleft G_{1}$.
9. If ϕ is onto and $\operatorname{Ker} \phi=\{e\}$, then ϕ is an isomorphism.

Proof:

Parts 1, 2, 3 are similar to what we have proved before for isomorphisms.

Part 4: If $H \triangleleft G_{1}$, then $\phi(H) \triangleleft \phi\left(G_{1}\right)$.
We know $x H x^{-1} \subseteq H\left(\forall x \in G_{1}\right)$.

Any element g in $\phi\left(G_{1}\right)$ has a preimage x, $\phi(x)=g$.

Choose any $\phi(h) \in \phi(H) . \quad \phi(x) \phi(h) \phi(x)^{-1}=$ $\phi\left(x h x^{-1}\right)=\phi\left(h^{\prime}\right) \in \phi(H)$.

So $\phi(H) \triangleleft \phi\left(G_{1}\right)$.
(We'll skip parts 5, 6.)
Part 7: If $K<G_{2}$, then $\phi^{-1}(K)<G_{1}$.
Clearly the identity is in $\phi^{-1}(K)$.
Closure: for any $a, b \in \phi^{-1}(K), \phi(a b)=\phi(a) \phi(b) \in$ K, so $a b \in \phi^{-1}(K)$.

Inverses: $\phi\left(a^{-1}\right)=\phi(a)^{-1} \in K$.

Part 8: If $K \triangleleft G_{2}$, then $\phi^{-1}(K) \triangleleft G_{1}$.
Choose any $a \in \phi^{-1}(K)$. For any $x \in G_{1}$, $\phi\left(x a x^{-1}\right)=\phi(x) \phi(a) \phi(x)^{-1} \in K$ since $K \triangleleft G_{2}$, so $x a x^{-1} \in \phi^{-1}(K)$.
(We'll skip part 9.)
Corollary: $\operatorname{Ker} \phi \triangleleft G_{1}$.

Proof:

Apply part 8 with $K=\{e\}<G_{2}$.

Theorem 10.3:

The First Isomorphism Theorem (Jordan, 1870)

Let $\phi: G_{1} \rightarrow G_{2}$ be a homomorphism. Then the mapping

$$
G_{1} /(\operatorname{Ker} \phi) \rightarrow \phi\left(G_{1}\right)
$$

given by

$$
g_{1} \operatorname{Ker} \phi \mapsto \phi\left(g_{1}\right)
$$

is an isomorphism, that is,

$$
G_{1} /(\operatorname{Ker} \phi) \approx \phi\left(G_{1}\right)
$$

