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Review from Lecture 23:

Theorem 9.3:

Let G be a group with center Z(G). If G/Z(G)

is cyclic, then G is Abelian.

Theorem 9.4:

For any group G, G/Z(G) ≈ Inn(G).

Theorem 9.5: Cauchy’s Theorem (Abelian)

Let G be a finite Abelian group and let p be a

prime that divides the order of G. Then G has

an element of order p.

2



Internal Direct Products

Notation: for subgroups H, K < G,

HK = {hk|h ∈ H, k ∈ K}.

Definition:

We say that G is the internal direct product

of H and K and write G = H × K

if H, K C G and

G = HK and H ∩ K = {e}.
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Definition:

Let H1, H2, . . . , Hn be a finite collection of nor-

mal subgroups of G. We say that G is the

internal direct product of H1, H2, . . . , Hn and

write

G = H1 × H2 × · · · × Hn

if the following two conditions hold:

1. G = H1H2 · · ·Hn = {h1h2 · · ·hn|hi ∈ Hi},

2. (H1H2 · · ·Hi)∩Hi+1 = {e} (i = 1, . . . , n−1).
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Note:

For the internal direct product H ×K, both H

and K must be normal subgroups of the same

group. For the external direct product, H and

K can be any groups.

Theorem 9.6

If a group G is the internal direct product of

a finite number of subgroups H1, H2, . . . , Hn,

then G is isomorphic to the external direct

product of H1, H2, . . . , Hn.

(We skip the proof.)

5



Chapter 10: Group Homomorphisms

(page 194)

Definition:

A homomorphism φ from a group G1 to a

group G2 is a mapping from G1 to G2 that

preserves the group operation; that is, for all

a, b ∈ G,

φ(ab) = φ(a)φ(b).

The term homomorphism comes from the Greek

words “homo” (like) and “morphe” (form).
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There is no requirement for a homomorphism

to be one-to-one or onto.

Note: A monomorphism is a one-to-one ho-

momorphism. An epimorphism is an onto ho-

momorphism. And of course, an isomorphism

is a homomorphism that is both one-to-one

and onto.

An endomorphism of a group is a homomor-

phism from a group to itself. An automor-

phism is an endomorphism that is also an iso-

morphism.
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Definition:

The kernel of a homomorphism φ : G1 → G2

is the set {x ∈ G|φ(x) = e}.

We denote the kernel of φ by Ker φ.

Example 1:

The kernel of an isomorphism is the trivial

group {e}.

Example 2:

Let R∗ be the group of nonzero real num-

bers under multiplication. The determinant

mapping A 7→ detA is a homomorphism from

GL(2, R) to R∗.

8



The kernel of the determinant mapping is the

special linear group SL(2, R), consisting of de-

terminant 1 matrices.

Example 4:

Let R[x] denote the group of all polynomials

with real coefficients under addition. For any

f ∈ R[x], let f ′ denote the derivative of f .

Then the derivative map f 7→ f ′ is an endo-

morphism of R[x] whose kernel is the set of all

constant polynomials.

Example 5:

The mapping φ from Z to Z/nZ defined by

φ(m) = r, where r is the remainder of m di-

vided by n. That is, φ(m) = (m mod n). The

kernel is 〈n〉.
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Theorem 10.1

Let φ : G1 → G2 be a homomorphism. Let g

be in G. Then

1. φ sends the identity of G1 to the identity

of G2.

2. φ(gn) = φ(g)n (∀n ∈ Z)

3. If |g| is finite, then |φ(g)| divides |g|.

4. Ker φ < G.

5. If φ(g1) = g2, then

φ−1(g2) = {x ∈ G1|φ(x) = g2} = g1 ·Ker φ.
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Proof:

Parts 1 and 2 are the same as we proved before

for isomorphisms.

Part 3: |φ(g)| divides |g|.

Let n = |g|. Then φ(g)n = φ(gn) = e.

Part 4: Ker φ < G.

We know the kernel is not empty since it con-

tains the identity.

Two-step subgroup test:

For any a, b ∈ Ker φ, we have φ(ab) = φ(a)φ(b) =

ee = e, so ab ∈ Ker φ.

For inverses, we have e = φ(aa−1) = φ(a)φ(a−1) =

eφ(a−1), so φ(a−1) = e and a−1 ∈ Ker φ.
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Part 5: If φ(g1) = g2, then

φ−1(g2) = {x ∈ G1|φ(x) = g2} = g1 ·Ker φ.

We will show containment in both directions.

First, φ−1(g2) ⊆ g1 ·Ker φ.

Let x ∈ φ−1(g2), so φ(x) = g2 = φ(g1). φ(g−1
1 x) =

g−1
2 g2 = e. Then g−1

1 x ∈ Ker φ, so x ∈ g1 Ker φ.

Second, g1 ·Ker φ ⊆ φ−1(g2).

Let x ∈ g1 · Ker φ, that is, x = g1k, for some

k ∈ Ker φ. Then φ(x) = φ(g1k) = φ(g1)φ(k) =

g2 · e = g2, so x ∈ φ−1(g2).
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Theorem 10.2:

Let φ : G1 → G2 be a homomorphism and let

H < G1. We have the following properties:

1. φ(H) = {φ(h)|h ∈ H} is a subgroup of G2.

2. If H is cyclic, then φ(H) is cyclic.

3. If H is Abelian, then φ(H) is Abelian.

4. If H C G1, then φ(H) C φ(G1).
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5. If |Ker φ| = n, then φ is an n-to-one map-

ping from G1 onto φ(G1).

6. If |H| = n, then |φ(H)| divides n.

7. If K < G2, then φ−1(K) < G1.

8. If K C G2, then φ−1(K) C G1.

9. If φ is onto and Ker φ = {e}, then φ is an

isomorphism.

14



Proof:

Parts 1, 2, 3 are similar to what we have proved

before for isomorphisms.

Part 4: If H C G1, then φ(H) C φ(G1).

We know xHx−1 ⊆ H (∀x ∈ G1).

Any element g in φ(G1) has a preimage x,

φ(x) = g.

Choose any φ(h) ∈ φ(H). φ(x)φ(h)φ(x)−1 =

φ(xhx−1) = φ(h′) ∈ φ(H).

So φ(H) C φ(G1).
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(We’ll skip parts 5, 6.)

Part 7: If K < G2, then φ−1(K) < G1.

Clearly the identity is in φ−1(K).

Closure: for any a, b ∈ φ−1(K), φ(ab) = φ(a)φ(b) ∈
K, so ab ∈ φ−1(K).

Inverses: φ(a−1) = φ(a)−1 ∈ K.
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Part 8: If K C G2, then φ−1(K) C G1.

Choose any a ∈ φ−1(K). For any x ∈ G1,

φ(xax−1) = φ(x)φ(a)φ(x)−1 ∈ K since K C G2,

so xax−1 ∈ φ−1(K).

(We’ll skip part 9.)

Corollary: Ker φ C G1.

Proof:

Apply part 8 with K = {e} < G2.
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Theorem 10.3:

The First Isomorphism Theorem

(Jordan, 1870)

Let φ : G1 → G2 be a homomorphism. Then

the mapping

G1/(Ker φ) → φ(G1)

given by

g1 Ker φ 7→ φ(g1)

is an isomorphism, that is,

G1/(Ker φ) ≈ φ(G1).
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