MA441: Algebraic Structures I

Lecture 24

3 December 2003

Review from Lecture 23:

Theorem 9.3:

Let G be a group with center Z(G). If G/Z(G) is cyclic, then G is Abelian.

Theorem 9.4:

For any group G, $G/Z(G) \approx \text{Inn}(G)$.

Theorem 9.5: Cauchy's Theorem (Abelian) Let G be a finite Abelian group and let p be a prime that divides the order of G. Then G has an element of order p.

Internal Direct Products

Notation: for subgroups H, K < G, $HK = \{hk | h \in H, k \in K\}.$

Definition:

We say that G is the internal direct product of H and K and write $G = H \times K$ if $H, K \triangleleft G$ and G = HK and $H \cap K = \{e\}.$

Definition:

Let H_1, H_2, \ldots, H_n be a finite collection of normal subgroups of G. We say that G is the **internal direct product** of H_1, H_2, \ldots, H_n and write

$$G = H_1 \times H_2 \times \cdots \times H_n$$

if the following two conditions hold:

1.
$$G = H_1 H_2 \cdots H_n = \{h_1 h_2 \cdots h_n | h_i \in H_i\},\$$

2. $(H_1H_2\cdots H_i)\cap H_{i+1} = \{e\} \ (i=1,\ldots,n-1).$

Note:

For the internal direct product $H \times K$, both Hand K must be normal subgroups of the same group. For the external direct product, H and K can be any groups.

Theorem 9.6

If a group G is the internal direct product of a finite number of subgroups H_1, H_2, \ldots, H_n , then G is isomorphic to the external direct product of H_1, H_2, \ldots, H_n .

(We skip the proof.)

Chapter 10: Group Homomorphisms

(page 194)

Definition:

A homomorphism ϕ from a group G_1 to a group G_2 is a mapping from G_1 to G_2 that preserves the group operation; that is, for all $a, b \in G$,

 $\phi(ab) = \phi(a)\phi(b).$

The term homomorphism comes from the Greek words "homo" (like) and "morphe" (form).

There is no requirement for a homomorphism to be one-to-one or onto.

Note: A **monomorphism** is a one-to-one homomorphism. An **epimorphism** is an onto homomorphism. And of course, an isomorphism is a homomorphism that is both one-to-one and onto.

An **endomorphism** of a group is a homomorphism from a group to itself. An automorphism is an endomorphism that is also an isomorphism.

Definition:

The **kernel** of a homomorphism $\phi : G_1 \to G_2$ is the set $\{x \in G | \phi(x) = e\}$.

We denote the kernel of ϕ by Ker ϕ .

Example 1:

The kernel of an isomorphism is the trivial group $\{e\}$.

Example 2:

Let \mathbb{R}^* be the group of nonzero real numbers under multiplication. The determinant mapping $A \mapsto \det A$ is a homomorphism from $GL(2,\mathbb{R})$ to \mathbb{R}^* .

The kernel of the determinant mapping is the special linear group $SL(2,\mathbb{R})$, consisting of determinant 1 matrices.

Example 4:

Let $\mathbb{R}[x]$ denote the group of all polynomials with real coefficients under addition. For any $f \in \mathbb{R}[x]$, let f' denote the derivative of f. Then the derivative map $f \mapsto f'$ is an endomorphism of $\mathbb{R}[x]$ whose kernel is the set of all constant polynomials.

Example 5:

The mapping ϕ from \mathbb{Z} to $\mathbb{Z}/n\mathbb{Z}$ defined by $\phi(m) = r$, where r is the remainder of m divided by n. That is, $\phi(m) = (m \mod n)$. The kernel is $\langle n \rangle$.

Theorem 10.1

Let $\phi: G_1 \to G_2$ be a homomorphism. Let g be in G. Then

- 1. ϕ sends the identity of G_1 to the identity of G_2 .
- 2. $\phi(g^n) = \phi(g)^n \ (\forall n \in \mathbb{Z})$
- 3. If |g| is finite, then $|\phi(g)|$ divides |g|.
- 4. Ker $\phi < G$.
- 5. If $\phi(g_1) = g_2$, then $\phi^{-1}(g_2) = \{x \in G_1 | \phi(x) = g_2\} = g_1 \cdot \text{Ker } \phi.$

Proof:

Parts 1 and 2 are the same as we proved before for isomorphisms.

Part 3: $|\phi(g)|$ divides |g|.

Let n = |g|. Then $\phi(g)^n = \phi(g^n) = e$.

```
Part 4: Ker \phi < G.
```

We know the kernel is not empty since it contains the identity.

Two-step subgroup test: For any $a, b \in \text{Ker } \phi$, we have $\phi(ab) = \phi(a)\phi(b) = ee = e$, so $ab \in \text{Ker } \phi$. For inverses, we have $e = \phi(aa^{-1}) = \phi(a)\phi(a^{-1}) = e\phi(a^{-1})$, so $\phi(a^{-1}) = e$ and $a^{-1} \in \text{Ker } \phi$.

Part 5: If
$$\phi(g_1) = g_2$$
, then
 $\phi^{-1}(g_2) = \{x \in G_1 | \phi(x) = g_2\} = g_1 \cdot \text{Ker } \phi.$

We will show containment in both directions.

First,
$$\phi^{-1}(g_2) \subseteq g_1 \cdot \operatorname{Ker} \phi$$
.

Let $x \in \phi^{-1}(g_2)$, so $\phi(x) = g_2 = \phi(g_1)$. $\phi(g_1^{-1}x) = g_2^{-1}g_2 = e$. Then $g_1^{-1}x \in \text{Ker }\phi$, so $x \in g_1 \text{Ker }\phi$.

Second, $g_1 \cdot \operatorname{Ker} \phi \subseteq \phi^{-1}(g_2)$.

Let $x \in g_1 \cdot \text{Ker } \phi$, that is, $x = g_1 k$, for some $k \in \text{Ker } \phi$. Then $\phi(x) = \phi(g_1 k) = \phi(g_1)\phi(k) = g_2 \cdot e = g_2$, so $x \in \phi^{-1}(g_2)$.

Theorem 10.2:

Let $\phi : G_1 \to G_2$ be a homomorphism and let $H < G_1$. We have the following properties:

1.
$$\phi(H) = \{\phi(h) | h \in H\}$$
 is a subgroup of G_2 .

2. If H is cyclic, then $\phi(H)$ is cyclic.

3. If H is Abelian, then $\phi(H)$ is Abelian.

4. If $H \triangleleft G_1$, then $\phi(H) \triangleleft \phi(G_1)$.

- 5. If $|\operatorname{Ker} \phi| = n$, then ϕ is an *n*-to-one mapping from G_1 onto $\phi(G_1)$.
- 6. If |H| = n, then $|\phi(H)|$ divides n.
- 7. If $K < G_2$, then $\phi^{-1}(K) < G_1$.
- 8. If $K \triangleleft G_2$, then $\phi^{-1}(K) \triangleleft G_1$.
- 9. If ϕ is onto and Ker $\phi = \{e\}$, then ϕ is an isomorphism.

Proof:

Parts 1, 2, 3 are similar to what we have proved before for isomorphisms.

Part 4: If $H \lhd G_1$, then $\phi(H) \lhd \phi(G_1)$.

We know $xHx^{-1} \subseteq H$ ($\forall x \in G_1$).

Any element g in $\phi(G_1)$ has a preimage x, $\phi(x) = g$.

Choose any $\phi(h) \in \phi(H)$. $\phi(x)\phi(h)\phi(x)^{-1} = \phi(xhx^{-1}) = \phi(h') \in \phi(H)$.

So $\phi(H) \lhd \phi(G_1)$.

(We'll skip parts 5, 6.)

Part 7: If $K < G_2$, then $\phi^{-1}(K) < G_1$.

Clearly the identity is in $\phi^{-1}(K)$.

Closure: for any $a, b \in \phi^{-1}(K)$, $\phi(ab) = \phi(a)\phi(b) \in K$, so $ab \in \phi^{-1}(K)$.

Inverses: $\phi(a^{-1}) = \phi(a)^{-1} \in K$.

Part 8: If $K \lhd G_2$, then $\phi^{-1}(K) \lhd G_1$.

Choose any $a \in \phi^{-1}(K)$. For any $x \in G_1$, $\phi(xax^{-1}) = \phi(x)\phi(a)\phi(x)^{-1} \in K$ since $K \triangleleft G_2$, so $xax^{-1} \in \phi^{-1}(K)$.

(We'll skip part 9.)

Corollary: Ker $\phi \lhd G_1$.

Proof:

Apply part 8 with $K = \{e\} < G_2$.

Theorem 10.3: The First Isomorphism Theorem (Jordan, 1870)

Let $\phi: G_1 \to G_2$ be a homomorphism. Then the mapping

$$G_1/(\operatorname{Ker} \phi) \to \phi(G_1)$$

given by

$$g_1 \operatorname{Ker} \phi \mapsto \phi(g_1)$$

is an isomorphism, that is,

 $G_1/(\operatorname{Ker} \phi) \approx \phi(G_1).$