
MA441: Algebraic Structures I

Lecture 25

8 December 2003

1



Review from Lecture 24:

Internal Direct Products

Notation: for subgroups H,K < G,

HK = {hk|h ∈ H, k ∈ K}.

Definition:

We say that G is the internal direct product

of H and K and write G = H ×K

if H,K CG and

G = HK and H ∩K = {e}.
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Definition:

Let H1, H2, . . . , Hn be a finite collection of nor-

mal subgroups of G. We say that G is the

internal direct product of H1, H2, . . . , Hn and

write

G = H1 ×H2 × · · · ×Hn

if the following two conditions hold:

1. G = H1H2 · · ·Hn = {h1h2 · · ·hn|hi ∈ Hi},

2. (H1H2 · · ·Hi)∩Hi+1 = {e} (i = 1, . . . , n−1).
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Theorem 9.6

If a group G is the internal direct product of

a finite number of subgroups H1, H2, . . . , Hn,

then G is isomorphic to the external direct

product of H1, H2, . . . , Hn.
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Example: (p. 185) Let m = n1n2 · · ·nk, where

the ni are relatively prime to each other. Pre-

viously we saw that

U(m) ≈ U(n1)⊕ U(n2)⊕ · · · ⊕ U(nk).

This external direct product is also an internal

direct product:

U(m) ≈ Um/n1
(m)×Um/n2

(m)×· · ·×Um/nk(m).

For example,

U(105) ≈ U(7)⊕ U(15)

= U15(105)× U7(105)

= {1,16,31,46,61,76} ×
{1,8,22,29,43,64,71,92}
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Definition:

A homomorphism φ from a group G1 to a

group G2 is a mapping from G1 to G2 that

preserves the group operation; that is, for all

a, b ∈ G,

φ(ab) = φ(a)φ(b).
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Definition:

The kernel of a homomorphism φ : G1 → G2

is the set {x ∈ G|φ(x) = e}.

We denote the kernel of φ by Ker φ.

Examples:

The kernel of the determinant map from GL(2,R)

to R∗ is the subgroup of matrices with determi-

nant 1 is SL(2,R). (This is called the special

linear group).

The kernel of the derivative map on polynomi-

als is the subgroup of constant polynomials.
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Theorem 10.1

Let φ : G1 → G2 be a homomorphism.

Let g be in G1. Then

1. φ sends the identity of G1 to the identity

of G2.

A homomorphism preserves identity.

2. φ(gn) = φ(g)n (∀n ∈ Z)

A homomorphism preserves powers.
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3. If |g| is finite, then |φ(g)| divides |g|.
The homomorphic image of an element

has an order that divides the order of

that element.

4. Ker φ < G.

The kernel of a homomorphism is a

subgroup.

5. If φ(g1) = g2, then

φ−1(g2) = {x ∈ G1|φ(x) = g2} = g1 ·Ker φ.

The homomorphic preimage of an ele-

ment is a coset of the kernel.
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Theorem 10.2:

Let φ : G1 → G2 be a homomorphism and let

H < G1. We have the following properties:

1. φ(H) = {φ(h)|h ∈ H} is a subgroup of G2.

The homomorphic image of a subgroup

is a subgroup, or

A homomorphism preserves the prop-

erty of being a subgroup.

2. If H is cyclic, then φ(H) is cyclic.

The homomorphic image of a cyclic

group is cyclic, or

A homomorphism preserves the prop-

erty of being cyclic.
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3. If H is Abelian, then φ(H) is Abelian. The

homomorphic image of an Abelian group

is Abelian, or

A homomorphism preserves the prop-

erty of being Abelian.

4. If H CG1, then φ(H) C φ(G1).

The homomorphic image of a normal

subgroup of a group is normal in the

image of that group.
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5. If |Ker φ| = n, then φ is an n-to-one map-

ping from G1 onto φ(G1).

Every element in the homomorphic im-

age of a group has the same number

of preimages as the identity.

6. If |H| = n, then |φ(H)| divides n.

The homomorphic image of a subgroup

has an order that divides the order of

that subgroup.

7. If K < G2, then φ−1(K) < G1.

The inverse image of a subgroup is a

subgroup.
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8. If K CG2, then φ−1(K) CG1.

The inverse image of a normal sub-

group is normal.

9. If φ is onto and Ker φ = {e}, then φ is an

isomorphism.
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Let’s review the proof of part 8:

If K CG2, then φ−1(K) CG1.

Choose any a ∈ φ−1(K). For any x ∈ G1,

φ(xax−1) = φ(x)φ(a)φ(x)−1 ∈ K since K CG2,

so xax−1 ∈ φ−1(K).

We specialized this part to get an important

corollary.

Corollary: Ker φCG1.

A kernel is a normal subgroup.

Proof:

Apply part 8 with K = {e} < G2.
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Theorem 10.3:

The First Isomorphism Theorem

(Jordan, 1870)

Let φ : G1 → G2 be a homomorphism. Then

the mapping

G1/(Ker φ) → φ(G1)

given by

g1 Ker φ 7→ φ(g1)

is an isomorphism, that is,

G1/(Ker φ) ≈ φ(G1).
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Proof:

Let ψ denote the correspondence

g1 Ker φ 7→ φ(g1).

We need to prove that this correspondence is

a well-defined function, that it is one-to-one,

is onto, and preserves the group operation.

Suppose xKer φ = yKer φ. We want to show

their images are the same, that is, φ(x) = φ(y).

From xKer φ = yKer φ, we have y−1x ∈ Ker φ.

So φ(y−1x) = e = φ(y−1)φ(x) = φ(y)−1φ(x),

which implies φ(y) = φ(x).
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Next, we show ψ is one-to-one.

Suppose φ(x) = φ(y). We will show x and y

represent the same coset of the kernel.

From φ(x) = φ(y), we have (φ(y))−1φ(x) = e.

This implies φ(y−1)φ(x) = φ(y−1x) = e, so

y−1x ∈ Ker φ, therefore xKer φ = yKer φ.
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It’s clear that ψ is onto, because any element

of the image φ(G1) equals φ(x) (∃x ∈ G1) and

ψ maps xKer φ to φ(x).

Finally, we show ψ preserves the group opera-

tion.

ψ(xKer φ · yKer φ) = ψ((xy)Ker φ) = φ(xy).

We also have

ψ(xKer φ · yKer φ) = ψ(xKer φ)ψ(yKer φ) =

φ(x)φ(y), which equals φ(xy).
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Example 13:

Consider the map from Z to Zn that reduces

the integers modulo n. The kernel of the map

is 〈n〉, and we have

Z/〈n〉 ≈ Zn.

Example 14:

Consider the map from R under addition to the

unit circle in C under multiplication (the circle

group) via x 7→ exp(ix) = cos(x) + i · sin(x).

The kernel of this map is 〈2π〉, and we have

that R/〈2π〉 is isomorphic to the circle group.
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Theorem 10.4:

Normal Subgroups are Kernels

Every normal subgroup of a group G is the

kernel of a homomorphism of G. In particular,

a normal subgroup N C G is the kernel of the

mapping g 7→ gN from G to the quotient group

G/N .

Proof:

Let γ : G→ G/N be the map γ(g) = gN .

We call this map the natural (or canonical)

homomorphism.

If we can show that this map is in fact a ho-

momorphism and that N is its kernel, then we

are done.
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The map γ preserves the group operation:

γ(xy) = (xy)N = xN · yN = γ(x) · γ(y).

The kernel of γ is exactly N because

γ(x) = xN = N iff x ∈ N .

From the corollary above, we know that a ker-

nel is a normal subgroup.
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Let’s define a few more basic concepts. (See

pages 89 and 395 and Example 15 on page

203.)

Definition:

Two elements a, b in a group G are conjugate

in G if for some x ∈ G, b = xax−1. We say b is

a conjugate of a (and vice-versa).

The conjugacy class of a, denoted cl(a) is the

set of all conjugates of a, that is,

cl(a) = {xax−1|x ∈ G}.

Conjugacy is an equivalence relation, and the

conjugacy classes partition a group.
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Definition:

The normalizer of H < G is denoted N(H)

and defined as

N(H) = {x ∈ G|xHx−1 = H}.

Even if H is not normal in G, H C N(H), and

the normalizer is the largest subgroup of G that

contains H as a normal subgroup.

Definition:

The centralizer of H < G is denoted C(H)

and defined as

C(H) = {x ∈ G|xhx−1 = h, ∀h ∈ H}.

The centralizer of H is the subgroup consisting

of all elements that commute with elements of

H.
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Reading Assignment:

Chapter 10

Chapter 11: pages 211–213

Chapter 24: pages 395–400

(Read up through Cauchy’s theorem and skip

the proofs.)
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