MA441: Algebraic Structures I

 Lecture 4
15 September 2003

The Pigeonhole Principle:

Let n be a positive integer.

If you place $n+1$ balls in n bins, then some bin must have more than one ball.
(From Chapter 0, page 14)

Mathematical Induction

Theorem 0.4:

First Principle of Mathematical Induction

Let S be a set of integers containing a.

Suppose that S has the property that whenever some integer $n \geq a$ belongs to S, then the integer $n+1$ belongs to S. ($n \in S$ implies $(n+1) \in S$, for $n \geq a$.)

Then S contains every integer greater than or equal to a.

In particular, to prove that a property $P(n)$ holds for every positive integer n, you can use induction:

Step 1 (base case):
Show that $P(1)$ holds.

Step 2 (induction hypothesis):
Assume that $P(n)$ holds.

Step 3 (induction step):
Prove that $P(n+1)$ holds.

There is also a second principle of induction called "strong" induction. (Step 2: $P(k)$ holds for all $k \leq n$.)

Lemma: Let G be an Abelian group. Then for any $a, b \in G,(a b)^{n}=a^{n} b^{n}(n \geq 1)$.

Case $n=1:(a b)^{1}=a b$. (Base case)
Assume ($a b)^{n}=a^{n} b^{n}$. (Induction hypothesis)
Prove $(a b)^{n+1}=a^{n+1} b^{n+1}$.
$(a b)^{n+1}=(a b)^{n} \cdot a b$.

Use the induction hypothesis:
$(a b)^{n} \cdot a b=a^{n} b^{n} a b$,
and since G is Abelian,
$a^{n} b^{n} a b=a^{n} a \cdot b^{n} b=a^{n+1} b^{n+1}$.

Review from Lecture 3:

We defined

- the order $|G|$ of a group G,
- the order $|g|$ of an element $g \in G$,
- when a subset H is a subgroup of $G, H \leq G$.

We also stated the Two-Step Subgroup Test:

Let G be a group and H a nonempty subset of G. Then $H \leq G$ if $a b \in H$ for any $a, b \in H$ and if $a^{-1} \in H$ for any $a \in H$.

Example 4':

Let G be an Abelian group and H the subset of elements of order dividing 3, i.e.,
$\left\{x \in G: x^{3}=e\right\}$.
Show that H forms a subgroup of G.

Let a, b be in H.
Closure: $(a b)^{3}=a^{3} b^{3}=e$ (since G is Abelian).
Inverses: Show $\left(a^{-1}\right)^{3}=e$. Since $a^{3}=e$,

$$
\left(a^{-1}\right)^{3} \cdot a^{3}=\left(a^{-1}\right)^{3} \cdot e=e
$$

Question: Do the elements of order exactly equal to 3 form a subgroup?

Example:

$\{e, F\}$ and $\left\{e, R, R^{2}, R^{3}\right\}$ are subgroups of D_{4}.

Example:

Let A, B be two matrices in $G L(2, \mathbb{R})$:

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

A and B generate the subgroup $\langle A, B\rangle$.

It suffices to check for identity and inverses. We then have closure automatically since $\langle A, B\rangle$ contains any sequence of products of A and B.
(From Chapter 3, page 62)

Theorem 3.3: Finite Subgroup Test

Let H be a nonempty finite subset of a group G. Then H is a subgroup of G if H is closed under the operation of G.

Proof:

It suffices to show that H contains inverses. Choose any a in G. If $a=e$, then it is its own inverse. If $a \neq e$, then consider the sequence a, a^{2}, \ldots. This sequence is contained in H by the closure property.

By the Pigeonhole Principle, since H is finite, there are distinct i, j such that $a^{i}=a^{j}$. Suppose $i>j$. Then a^{i-j} is in the sequence and must equal e because

$$
a^{i}=a^{j} \cdot a^{i-j}=a^{j} .
$$

We have that $a a^{i-j-1}=a^{i-j}=e$, so $a^{-1}=a^{i-j-1}$.

Then $a=a^{1} \neq e$ implies $i-j>1$, so $a^{-1}=a^{i-j-1} \in H$.

Definition:

For any $a \in G$, let $\langle a\rangle$ denote the set $\left\{a^{n}: n \in \mathbb{Z}\right\}$.

Theorem:

Let G be a group and a any element in G. Then $\langle a\rangle$ is a subgroup of G.

Proof:

For any $n, m, a^{n} a^{m}=a^{n+m}$. For any a^{n}, a^{-n} is in $\langle a\rangle$ as well.

Definition:

We refer to $\langle a\rangle$ as the cyclic subgroup generated by a. In the case that $G=\langle a\rangle$, we say that G is cyclic (or G is a cyclic group), and that a is a generator of G (or G is generated by a).

Note that since

$$
a^{i} a^{j}=a^{i+j}=a^{j+i}=a^{j} a^{i},
$$

every cyclic group is Abelian.

Example 7:

In $U(10),\langle 3\rangle=\{3,9,7,1\}$, that is, $U(10)$ is generated by 3 .
$3^{2}=9,3^{3} \equiv 7(\bmod 10), 3^{4} \equiv 1(\bmod 10)$.

Example 8:

In $\mathbb{Z} / 10 \mathbb{Z}$ (under addition mod 10), $\langle 2\rangle=\{2,4,6,8,0\}$ is a subgroup.

Reading Assignment:

Chapter 0: pages 14-17 on mathematical induction and 20-22 on functions.

All of Chapter 3.

Chapter 4: Properties of Cyclic Groups, pages 73-78.

Homework Assignment 2:

Chapter 2: 2, 5, 7, 14, 15, 30

Chapter 3: 1, 4, 10, 15, 16, 19

Chapter 4: 1, 2

