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The Pigeonhole Principle:

Let n be a positive integer.

If you place n + 1 balls in n bins, then some

bin must have more than one ball.
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(From Chapter 0, page 14)

Mathematical Induction

Theorem 0.4:

First Principle of Mathematical Induction

Let S be a set of integers containing a.

Suppose that S has the property that whenever

some integer n ≥ a belongs to S, then the

integer n + 1 belongs to S. (n ∈ S implies

(n + 1) ∈ S, for n ≥ a.)

Then S contains every integer greater than or

equal to a.
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In particular, to prove that a property P (n)

holds for every positive integer n, you can use

induction:

Step 1 (base case):

Show that P (1) holds.

Step 2 (induction hypothesis):

Assume that P (n) holds.

Step 3 (induction step):

Prove that P (n + 1) holds.

There is also a second principle of induction

called “strong” induction. (Step 2: P (k) holds

for all k ≤ n.)
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Lemma: Let G be an Abelian group. Then

for any a, b ∈ G, (ab)n = anbn (n ≥ 1).

Case n = 1: (ab)1 = ab. (Base case)

Assume (ab)n = anbn. (Induction hypothesis)

Prove (ab)n+1 = an+1bn+1.

(ab)n+1 = (ab)n · ab.

Use the induction hypothesis:

(ab)n · ab = anbnab,

and since G is Abelian,

anbnab = ana · bnb = an+1bn+1.
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Review from Lecture 3:

We defined

• the order |G| of a group G,

• the order |g| of an element g ∈ G,

• when a subset H is a subgroup of G, H ≤ G.
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We also stated the Two-Step Subgroup Test:

Let G be a group and H a nonempty subset of

G. Then H ≤ G if ab ∈ H for any a, b ∈ H and

if a−1 ∈ H for any a ∈ H.
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Example 4’:

Let G be an Abelian group and H the subset

of elements of order dividing 3, i.e.,

{x ∈ G : x3 = e}.
Show that H forms a subgroup of G.

Let a, b be in H.

Closure: (ab)3 = a3b3 = e (since G is Abelian).

Inverses: Show (a−1)3 = e. Since a3 = e,

(a−1)3 · a3 = (a−1)3 · e = e.
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Question: Do the elements of order exactly

equal to 3 form a subgroup?

Example:

{e, F} and {e, R, R2, R3} are subgroups of D4.
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Example:

Let A, B be two matrices in GL(2, R):

A =

(
−1 0
0 1

)
,

and

B =

(
0 1
−1 0

)
,

A and B generate the subgroup 〈A, B〉.

It suffices to check for identity and inverses.

We then have closure automatically since 〈A, B〉
contains any sequence of products of A and B.
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(From Chapter 3, page 62)

Theorem 3.3: Finite Subgroup Test

Let H be a nonempty finite subset of a group

G. Then H is a subgroup of G if H is closed

under the operation of G.

Proof:

It suffices to show that H contains inverses.

Choose any a in G. If a = e, then it is its own

inverse. If a 6= e, then consider the sequence

a, a2, . . .. This sequence is contained in H by

the closure property.
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By the Pigeonhole Principle, since H is finite,

there are distinct i, j such that ai = aj. Sup-

pose i > j. Then ai−j is in the sequence and

must equal e because

ai = aj · ai−j = aj.

We have that aai−j−1 = ai−j = e, so

a−1 = ai−j−1.

Then a = a1 6= e implies i − j > 1, so

a−1 = ai−j−1 ∈ H.
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Definition:

For any a ∈ G, let 〈a〉 denote the set

{an : n ∈ Z}.

Theorem:

Let G be a group and a any element in G.

Then 〈a〉 is a subgroup of G.

Proof:

For any n, m, anam = an+m. For any an,

a−n is in 〈a〉 as well.
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Definition:

We refer to 〈a〉 as the cyclic subgroup gen-

erated by a. In the case that G = 〈a〉, we say

that G is cyclic (or G is a cyclic group), and

that a is a generator of G (or G is generated

by a).

Note that since

aiaj = ai+j = aj+i = ajai,

every cyclic group is Abelian.

14



Example 7:

In U(10), 〈3〉 = {3,9,7,1}, that is, U(10) is

generated by 3.

32 = 9, 33 ≡ 7 (mod 10), 34 ≡ 1 (mod 10).

Example 8:

In Z/10Z (under addition mod 10),

〈2〉 = {2,4,6,8,0} is a subgroup.
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Reading Assignment:

Chapter 0: pages 14–17 on mathematical in-

duction and 20–22 on functions.

All of Chapter 3.

Chapter 4: Properties of Cyclic Groups, pages

73–78.
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Homework Assignment 2:

Chapter 2: 2, 5, 7, 14, 15, 30

Chapter 3: 1, 4, 10, 15, 16, 19

Chapter 4: 1, 2
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