MA441: Algebraic Structures I

Lecture 5

17 September 2003

Review from Lecture 4:

The Pigeonhole Principle

Mathematical induction, $(a b)^{n}=a^{n} b^{n}$

Finite Subgroup Test

We defined the cyclic subgroup generated by $a \in G$ to be

$$
\langle a\rangle=\left\{a^{n}: n \in \mathbb{Z}\right\}
$$

We said that G is cyclic if $G=\langle a\rangle$.

We previewed the concept of isomorphism by looking at D_{4} in three different ways: geometric group, permutation group, and matrix group.
(From Chapter 3, page 64.)

Definition:

We say two elements a, b of a group commute if $a b=b a$.

Note: all elements of an Abelian group commute.

Definition: Center of a Group

The center $Z(G)$ of a group G is the subset of elements of G that commute with every element of G. We can express this formally as

$$
Z(G)=\{a \in G: a x=x a, \text { for all } x \in G\} .
$$

Theorem 3.5: The center is a subgroup.

Proof:

Identity: $e \in Z(G)$ since the identity commutes with all elements.
Closure: suppose $a, b \in Z(G)$. We have $(a b) x=a(b x)=a(x b)=(a x) b=(x a) b=x(a b)$.

Inverses: given $a x=x a$, we can multiply on the left and right by a^{-1} to get

$$
a^{-1} a x a^{-1}=a^{-1} x a a^{-1}
$$

which yields

$$
x a^{-1}=a^{-1} x .
$$

So a^{-1} commutes with x.

Definition: The centralizer of a in G

Let a be a fixed element of G.
The centralizer of a in G, which we denote $C(a)$ (or sometimes $C_{a}(G)$) is the set of elements of G that commute with a.

We can write this formally as

$$
C(a)=\{g \in G: g a=a g\} .
$$

Note that $C(a)$ contains $Z(G)$.

Example 12:

Consider D_{4}, where R_{n} denotes rotation by n degrees, H denotes reflection about the horizontal axis, V denotes reflection about the vertical axis.
(Notation: $R_{0}=e, R_{90}=R$, and $V=F$.)
$C\left(R_{0}\right)=D_{4}=C\left(R_{180}\right)$.
$C\left(R_{90}\right)=\left\{R_{0}, R_{90}, R_{180}, R_{270}\right\}=C\left(R_{270}\right)$.
$C(H)=\left\{R_{0}, H, R_{180}, V\right\}=C(V)$.

Since $R=R_{90}$ and $F=V$ generate D_{4}, it suffices to test relationships on these two generators.

Chapter 4: Cyclic Groups

(From Chapter 4, page 73)

Consider a cyclic group $G=\langle a\rangle$.

We say that G is generated by a or that a generates G.

Example 1:

The set of integers \mathbb{Z} under addition is generated by 1 . The additive inverse of 1 is -1 .

When $n>0$, we have $n=1+\cdots+1$ (n times).
When $n<0, n=(-1)+\cdots+(-1)$ (n times).

Example 3:

$\mathbb{Z} / 8 \mathbb{Z}$ under addition is cyclic generated by either $1,3,5$, or 7 . Let's check that 7 is a generator.

$$
\begin{aligned}
& 1 \cdot 7=7 \quad(\bmod 8) \\
& 2 \cdot 7 \equiv 6(\bmod 8) \\
& 3 \cdot 7 \equiv 5(\bmod 8) \\
& \ldots
\end{aligned}
$$

and so on, because $7 \equiv-1(\bmod 8)$.

Nonexample 1:

$\mathbb{Z} / 8 \mathbb{Z}$ under addition is not generated by 4 , since $\langle 4\rangle=\{4,0\}$.

Nonexample 2:

The dihedral group D_{4} is not cyclic because all elements are either rotations or reflections and have orders 1, 2 , or 4. A generator would have to have order 8.

Nonexample 3:
$U(8)=\{1,3,5,7\}$ is not cyclic since $3,5,7$ have order 2 :

$$
\begin{array}{ll}
3^{2} \equiv 1 & (\bmod 8) \\
5^{2} \equiv 1 & \equiv \bmod 8) \\
7^{2} \equiv 1 & (\bmod 8)
\end{array}
$$

A generator would have to have order 4.

Theorem 4.1: Criterion for $a^{i}=a^{j}$

Let G be a group, and let a belong to G. If a has infinite order, then all distinct powers of a are distinct group elements. If a has finite order, say, n, then

$$
\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}
$$

and $a^{i}=a^{j}$ if and only if n divides $i-j$.

Proof:

If a has infinite order, then there is no nonzero n such that $a^{n}=e$. Since $a^{i}=a^{j}$ implies that $a^{i-j}=e$, it follows that $i-j=0$, so $i=j$. That proves the first statement of the theorem.

Now assume that a has order n, i.e., $|a|=n$.
We will prove that $\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$.

Certainly these n elements are distinct. If $a^{i}=$ a^{j} with $0 \leq j<i \leq n-1$, then $a^{i-j}=e$ with $0<i-j \leq n-1$. But by the definition of the order of an element, $i-j=0$.

Now suppose that a^{k} is an arbitrary element of $\langle a\rangle$. We wish to show that a^{k} is in $\left\{e, a, \ldots, a^{n-1}\right\}$.

By the division algorithm, there exist integers q, r such that $k=q n+r$ with $0 \leq r<n$. Then $a^{k}=a^{q n+r}=a^{q n} \cdot a^{r}=\left(a^{n}\right)^{q} \cdot a^{r}=e^{q} \cdot a^{r}=a^{r}$.

This proves that $\langle a\rangle=\left\{e, a, \ldots, a^{n-1}\right\}$.

Next we prove that $a^{i}=a^{j}$ if and only if (iff) n divides $i-j$.

Suppose $a^{i}=a^{j}$. We show $n \mid(i-j)$.

Apply the division algorithm again to obtain q, r integers for which $i-j=q n+r$, with $0 \leq r<n$.

Since $a^{i}=a^{j}$, we know $a^{i-j}=e$ and

$$
e=a^{i-j}=a^{q n+r}=\left(a^{n}\right)^{q} \cdot a^{r}=a^{r}
$$

Since the order of a is n and $0 \leq r<n$, we have $r=0$, so n divides $i-j$.

Conversely, if $n \mid(i-j)$, say, $i-j=q n$, then $a^{i-j}=a^{q n}=e$.

This proves the last statement.

