MA441: Algebraic Structures I

Lecture 5

17 September 2003

Review from Lecture 4:

The Pigeonhole Principle

Mathematical induction, $(ab)^n = a^n b^n$

Finite Subgroup Test

We defined the cyclic subgroup generated by $a \in G$ to be

$$\langle a \rangle = \{a^n : n \in \mathbb{Z}\}.$$

We said that G is cyclic if $G = \langle a \rangle$.

We previewed the concept of **isomorphism** by looking at D_4 in three different ways: geometric group, permutation group, and matrix group.

(From Chapter 3, page 64.)

Definition:

We say two elements a, b of a group **commute** if ab = ba.

Note: all elements of an Abelian group commute.

Definition: Center of a Group

The **center** Z(G) of a group G is the subset of elements of G that commute with every element of G. We can express this formally as

$$Z(G) = \{a \in G : ax = xa, \text{ for all } x \in G\}.$$

Theorem 3.5: The center is a subgroup.

Proof:

Identity: $e \in Z(G)$ since the identity commutes with all elements.

Closure: suppose $a, b \in Z(G)$. We have

$$(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab).$$

Inverses: given ax = xa, we can multiply on the left and right by a^{-1} to get

$$a^{-1}axa^{-1} = a^{-1}xaa^{-1}$$

which yields

$$xa^{-1} = a^{-1}x.$$

So a^{-1} commutes with x.

Definition: The centralizer of a in G

Let a be a fixed element of G.

The **centralizer of** a **in** G, which we denote C(a) (or sometimes $C_a(G)$) is the set of elements of G that commute with a.

We can write this formally as

$$C(a) = \{g \in G : ga = ag\}.$$

Note that C(a) contains Z(G).

Example 12:

Consider D_4 , where R_n denotes rotation by n degrees, H denotes reflection about the horizontal axis, V denotes reflection about the vertical axis.

(Notation: $R_0 = e$, $R_{90} = R$, and V = F.)

$$C(R_0) = D_4 = C(R_{180}).$$

$$C(R_{90}) = \{R_0, R_{90}, R_{180}, R_{270}\} = C(R_{270}).$$

$$C(H) = \{R_0, H, R_{180}, V\} = C(V).$$

Since $R = R_{90}$ and F = V generate D_4 , it suffices to test relationships on these two generators.

Chapter 4: Cyclic Groups

(From Chapter 4, page 73)

Consider a cyclic group $G = \langle a \rangle$.

We say that G is generated by a or that a generates G.

Example 1:

The set of integers \mathbb{Z} under addition is generated by 1. The additive inverse of 1 is -1.

When n > 0, we have $n = 1 + \cdots + 1$ (*n* times). When n < 0, $n = (-1) + \cdots + (-1)$ (*n* times).

Example 3:

 $\mathbb{Z}/8\mathbb{Z}$ under addition is cyclic generated by either 1, 3, 5, or 7. Let's check that 7 is a generator.

$$1 \cdot 7 = 7 \pmod{8}$$

$$2 \cdot 7 \equiv 6 \pmod{8}$$

$$3 \cdot 7 \equiv 5 \pmod{8}$$

. .

and so on, because $7 \equiv -1 \pmod{8}$.

Nonexample 1:

 $\mathbb{Z}/8\mathbb{Z}$ under addition is not generated by 4, since $\langle 4 \rangle = \{4,0\}$.

Nonexample 2:

The dihedral group D_4 is not cyclic because all elements are either rotations or reflections and have orders 1, 2, or 4. A generator would have to have order 8.

Nonexample 3:

 $U(8) = \{1,3,5,7\}$ is not cyclic since 3, 5, 7 have order 2:

$$3^2 \equiv 1 \pmod{8}$$

 $5^2 \equiv 1 \pmod{8}$
 $7^2 \equiv 1 \pmod{8}$

A generator would have to have order 4.

Theorem 4.1: Criterion for $a^i = a^j$

Let G be a group, and let a belong to G. If a has infinite order, then all distinct powers of a are distinct group elements. If a has finite order, say, n, then

$$\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}\$$

and $a^i = a^j$ if and only if n divides i - j.

Proof:

If a has infinite order, then there is no non-zero n such that $a^n=e$. Since $a^i=a^j$ implies that $a^{i-j}=e$, it follows that i-j=0, so i=j. That proves the first statement of the theorem.

Now assume that a has order n, i.e., |a| = n.

We will prove that $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}.$

Certainly these n elements are distinct. If $a^i=a^j$ with $0 \le j < i \le n-1$, then $a^{i-j}=e$ with $0 < i-j \le n-1$. But by the definition of the order of an element, i-j=0.

Now suppose that a^k is an arbitrary element of $\langle a \rangle$. We wish to show that a^k is in $\{e, a, \dots, a^{n-1}\}$.

By the division algorithm, there exist integers q, r such that k = qn + r with $0 \le r < n$. Then $a^k = a^{qn+r} = a^{qn} \cdot a^r = (a^n)^q \cdot a^r = e^q \cdot a^r = a^r$.

This proves that $\langle a \rangle = \{e, a, \dots, a^{n-1}\}.$

Next we prove that $a^i = a^j$ if and only if (iff) n divides i - j.

Suppose $a^i = a^j$. We show n|(i-j).

Apply the division algorithm again to obtain q, r integers for which i-j=qn+r, with $0 \le r < n$.

Since $a^i = a^j$, we know $a^{i-j} = e$ and

$$e = a^{i-j} = a^{qn+r} = (a^n)^q \cdot a^r = a^r.$$

Since the order of a is n and $0 \le r < n$, we have r = 0, so n divides i - j.

Conversely, if n|(i-j), say, i-j=qn, then $a^{i-j}=a^{qn}=e$.

This proves the last statement.