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Review from Lecture 4:

The Pigeonhole Principle

Mathematical induction, (ab)n = anbn

Finite Subgroup Test

We defined the cyclic subgroup generated by

a ∈ G to be

〈a〉 = {an : n ∈ Z}.
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We said that G is cyclic if G = 〈a〉.

We previewed the concept of isomorphism by

looking at D4 in three different ways: geo-

metric group, permutation group, and matrix

group.
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(From Chapter 3, page 64.)

Definition:

We say two elements a, b of a group commute

if ab = ba.

Note: all elements of an Abelian group com-

mute.

Definition: Center of a Group

The center Z(G) of a group G is the subset

of elements of G that commute with every el-

ement of G. We can express this formally as

Z(G) = {a ∈ G : ax = xa, for all x ∈ G}.
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Theorem 3.5: The center is a subgroup.

Proof:

Identity: e ∈ Z(G) since the identity commutes

with all elements.

Closure: suppose a, b ∈ Z(G). We have

(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab).

Inverses: given ax = xa, we can multiply on

the left and right by a−1 to get

a−1axa−1 = a−1xaa−1,

which yields

xa−1 = a−1x.

So a−1 commutes with x.
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Definition: The centralizer of a in G

Let a be a fixed element of G.

The centralizer of a in G, which we denote

C(a) (or sometimes Ca(G)) is the set of ele-

ments of G that commute with a.

We can write this formally as

C(a) = {g ∈ G : ga = ag}.

Note that C(a) contains Z(G).
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Example 12:

Consider D4, where Rn denotes rotation by n

degrees, H denotes reflection about the hori-

zontal axis, V denotes reflection about the ver-

tical axis.

(Notation: R0 = e, R90 = R, and V = F .)

C(R0) = D4 = C(R180).

C(R90) = {R0, R90, R180, R270} = C(R270).

C(H) = {R0, H, R180, V } = C(V ).

Since R = R90 and F = V generate D4, it

suffices to test relationships on these two gen-

erators.
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Chapter 4: Cyclic Groups

(From Chapter 4, page 73)

Consider a cyclic group G = 〈a〉.

We say that G is generated by a or that a

generates G.

Example 1:

The set of integers Z under addition is gener-

ated by 1. The additive inverse of 1 is −1.

When n > 0, we have n = 1+ · · ·+1 (n times).

When n < 0, n = (−1) + · · ·+ (−1) (n times).
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Example 3:

Z/8Z under addition is cyclic generated by ei-

ther 1, 3, 5, or 7. Let’s check that 7 is a

generator.

1 · 7 = 7 (mod 8)

2 · 7 ≡ 6 (mod 8)

3 · 7 ≡ 5 (mod 8)

. . .

and so on, because 7 ≡ −1 (mod 8).

Nonexample 1:

Z/8Z under addition is not generated by 4,

since 〈4〉 = {4,0}.
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Nonexample 2:

The dihedral group D4 is not cyclic because all

elements are either rotations or reflections and

have orders 1, 2, or 4. A generator would have

to have order 8.

Nonexample 3:

U(8) = {1,3,5,7} is not cyclic since 3, 5, 7

have order 2:

32 ≡ 1 (mod 8)

52 ≡ 1 (mod 8)

72 ≡ 1 (mod 8)

A generator would have to have order 4.
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Theorem 4.1: Criterion for ai = aj

Let G be a group, and let a belong to G. If

a has infinite order, then all distinct powers of

a are distinct group elements. If a has finite

order, say, n, then

〈a〉 = {e, a, a2, . . . , an−1}

and ai = aj if and only if n divides i − j.

Proof:

If a has infinite order, then there is no non-

zero n such that an = e. Since ai = aj implies

that ai−j = e, it follows that i − j = 0, so

i = j. That proves the first statement of the

theorem.
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Now assume that a has order n, i.e., |a| = n.

We will prove that 〈a〉 = {e, a, a2, . . . , an−1}.

Certainly these n elements are distinct. If ai =

aj with 0 ≤ j < i ≤ n − 1, then ai−j = e with

0 < i − j ≤ n − 1. But by the definition of the

order of an element, i − j = 0.

Now suppose that ak is an arbitrary element of

〈a〉. We wish to show that ak is in {e, a, . . . , an−1}.
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By the division algorithm, there exist integers

q, r such that k = qn + r with 0 ≤ r < n. Then

ak = aqn+r = aqn · ar = (an)q · ar = eq · ar = ar.

This proves that 〈a〉 = {e, a, . . . , an−1}.
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Next we prove that ai = aj if and only if (iff)

n divides i − j.

Suppose ai = aj. We show n|(i − j).

Apply the division algorithm again to obtain q, r

integers for which i−j = qn+r, with 0 ≤ r < n.
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Since ai = aj, we know ai−j = e and

e = ai−j = aqn+r = (an)q · ar = ar.

Since the order of a is n and 0 ≤ r < n, we

have r = 0, so n divides i − j.

Conversely, if n|(i − j), say, i − j = qn, then

ai−j = aqn = e.

This proves the last statement.
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