MA441: Algebraic Structures I Lecture 7

24 September 2003

Review from Lecture 6:

Theorem 4.1: Criterion for $a^{i}=a^{j}$

Let G be a group, and let a belong to G. If a has infinite order, then all distinct powers of a are distinct group elements. If a has finite order, say, n, then

$$
\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}
$$

and $a^{i}=a^{j}$ if and only if n divides $i-j$.

Corollary 1:

For any group element a,

$$
|a|=|\langle a\rangle| .
$$

Corollary 2:

Let G be a group and let $a \in G$ have order n. If $a^{k}=e$, then n divides k.

Theorem 4.2:

Let a be an element of order n in a group and let k be a positive integer. Then

$$
\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(n, k)}\right\rangle
$$

and

$$
\left|a^{k}\right|=\frac{n}{\operatorname{gcd}(n, k)} .
$$

Corollary 1:

Let $|a|=n$. Then $\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle$ iff $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$.

Proof:

By Theorem 4.2, we have that $\left\langle a^{i}\right\rangle=\left\langle a^{\operatorname{gcd}(n, i)}\right\rangle$ and $\left\langle a^{j}\right\rangle=\left\langle a^{\operatorname{gcd}(n, j)}\right\rangle$.

We need to prove $\left\langle a^{\operatorname{gcd}(n, i)}\right\rangle=\left\langle a^{\operatorname{gcd}(n, j)}\right\rangle$ iff $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$.

Clearly $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$ implies $\left\langle a^{\operatorname{gcd}(n, i)}\right\rangle=\left\langle a^{\operatorname{gcd}(n, j)}\right\rangle$.

Suppose that $\left\langle a^{\operatorname{gcd}(n, i)}\right\rangle=\left\langle a^{\operatorname{gcd}(n, j)}\right\rangle$.
This means $\left|\left\langle a^{\operatorname{gcd}(n, i)}\right\rangle\right|=\left|\left\langle a^{\operatorname{gcd}(n, j)}\right\rangle\right|$, so $\left|a^{\operatorname{gcd}(n, i)}\right|=\left|a^{\operatorname{gcd}(n, j)}\right|$.

By the second part of Theorem 4.2, on the LHS $\left|a^{\operatorname{gcd}(n, i)}\right|=n / \operatorname{gcd}(n, i)$ and on the RHS $\left|a^{\operatorname{gcd}(n, j)}\right|=n / \operatorname{gcd}(n, j)$. Therefore,

$$
\frac{n}{\operatorname{gcd}(n, i)}=\frac{n}{\operatorname{gcd}(n, j)},
$$

so $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$.

Here are two special cases of Corollary 1.

Corollary 2:

Let $G=\langle a\rangle$ be a cyclic group of order n. Then $G=\left\langle a^{k}\right\rangle$ iff $\operatorname{gcd}(n, k)=1$.

Corollary 3:

An integer k in $\mathbb{Z} / n \mathbb{Z}$ is a generator of $\mathbb{Z} / n \mathbb{Z}$ iff $\operatorname{gcd}(n, k)=1$.
(Compare this to exercises 1,2 of Chapter 4.)

Classification of Subgroups of Cyclic Groups

(From Chapter 4, page 78)
Theorem 4.3: Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a\rangle|=n$, then the order of any subgroup of $\langle a\rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a\rangle$ has exactly one subgroup of order k, namely, $\left\langle a^{n / k}\right\rangle$.

Example:

What are the subgroups of a cyclic group $\langle a\rangle$ of order 30?

Consider the divisors of 30 : $\{1,2,3,5,6,10,15,30\}$.

Corollary: Subgroups of $\mathbb{Z} / n \mathbb{Z}$

For each positive divisor k of n, the set $\langle n / k\rangle$ is the unique subgroup of $\mathbb{Z} / n \mathbb{Z}$ of order k; moreover, these are the only subgroups of $\mathbb{Z} / n \mathbb{Z}$.

Proof of Theorem 4.3:

Claim 1:

Every subgroup of a cyclic group is cyclic.

Let $G=\langle a\rangle$ and suppose $H \leq G$. We must show H is cyclic.

If H is the trivial subgroup, i.e., $H=\{e\}$, then it is cyclic. So assume H is nontrivial, i.e., $H \neq\{e\}$.
H contains an element a^{t} for some $t>0$.

Since $H \leq G=\langle a\rangle$, there is some power of a in H, say, a^{t}. If $t<0$, then the inverse of a^{t}, a^{-t} is in H and $-t>0$.

Let m be the least positive integer such that $a^{m} \in H$.

By closure, $\left\langle a^{m}\right\rangle \subseteq H$.

Because we have chosen m to be the least power of a in H, by using the division algorithm, we can show that $\left\langle a^{m}\right\rangle \supseteq H$.
(Why?)

Let b be any element of H. Since $H \leq\langle a\rangle$, $b=a^{k}$ for some k. Since m is least, $m \leq k$.

Apply the division algorithm to k and m to divide k by m and get a quotient q with remainder r such that $0 \leq r<m$:

$$
k=m q+r
$$

hence

$$
a^{k}=a^{m q} \cdot a^{r}
$$

How can we write a^{r} in terms of a^{k} and a^{m} ?

Compute $a^{r}=a^{k} \cdot\left(a^{m}\right)^{-q} .(r=k-m q)$

What can we conclude about r ?

Since $0 \leq r<m$, yet m is the least positive integer such that $a^{m} \in H$, we must have

$$
r=0
$$

What does this tell us about our arbitrary $b \in H$?

What about the relationship between H and $\left\langle a^{m}\right\rangle$?

Since $b=a^{k}, r=0$, therefore $k=m q$ and

$$
b=a^{k}=\left(a^{m}\right)^{q}
$$

so $b \in\left\langle a^{m}\right\rangle$.

Then $H \subseteq\left\langle a^{m}\right\rangle$, which gives us

$$
H=\left\langle a^{m}\right\rangle
$$

