MA441: Algebraic Structures I

Lecture 8

29 September 2003

Homework 2

Chapter 2, Problem 14:

Let G be a group with the following property:

If a, b, and c belong to G and ab = ca, then b = c.

Prove that G is Abelian.

Please include this in Homework 4.

Review from Lecture 7:

Corollary 2 to Theorem 4.1:

Let G be a group and let $a \in G$ have order n. If $a^k = e$, then |a| = n divides k.

Theorem 4.2:

Let a be an element of order n in a group and let k be a positive integer. Then

$$\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$$

and

$$|a^k| = \frac{n}{\gcd(n,k)}.$$

Corollary 1:

Let |a| = n. Then $\langle a^i \rangle = \langle a^j \rangle$ iff gcd(n,i) = gcd(n,j).

Corollary 2:

Let $G = \langle a \rangle$ be a cyclic group of order n. Then $G = \langle a^k \rangle$ iff gcd(n,k) = 1.

Corollary 3:

An integer k in $\mathbb{Z}/n\mathbb{Z}$ is a generator of $\mathbb{Z}/n\mathbb{Z}$ iff gcd(n,k) = 1.

Theorem 4.3: Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k, namely, $\langle a^{n/k} \rangle$.

We proved last time:

Claim 1:

Every subgroup of a cyclic group is cyclic.

Proof of Theorem 4.3:

Claim 2: if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n.

Let *H* be any subgroup of $\langle a \rangle$.

We've shown that $H = \langle a^m \rangle \leq \langle a \rangle$ for some m > 0.

We know $(a^m)^n = (a^n)^m = e^m = e$.

What can we say about the order of a^m ? (Consider Corollary 2 to Theorem 4.1) This corollary tells us that $|a^m|$ divides n.

Therefore the order of H, $|H| = |a^m|$, is a divisor of n.

Claim 3: For each positive divisor k of n, the group $\langle a \rangle$ has a subgroup of order k.

What is the logical choice for such a subgroup?

Why does it have order k?

The subgroup $\langle a^{n/k} \rangle$ has order k:

$$(a^{n/k})^k = a^n = e.$$

Why does this have order exactly equal to k?

From Theorem 4.2,

$$|a^{n/k}| = \frac{n}{\gcd(n, n/k)}.$$

Since k divides n, so does n/k. Therefore the order is n/(n/k) = k.

Claim 4: $\langle a^{n/k} \rangle$ is the unique subgroup of order k in $\langle a \rangle$.

Suppose *H* is any subgroup of order *k*, $H \leq \langle a \rangle$.

Then by the first Claim, $H = \langle a^s \rangle$ for some s that divides n.

Then $s = \gcd(n, s)$ and |H| = n/s.

What can we say about s and k?

By assumption, |H| = k, which equals n/s.

So s = n/k, which means $H = \langle a^{n/k} \rangle$.

Since any subgroup of order k is equal to this one, it is the unique subgroup of order k.

Corollary: Subgroups of $\mathbb{Z}/n\mathbb{Z}$

For each positive divisor k of n, the set $\langle n/k \rangle$ is the unique subgroup of $\mathbb{Z}/n\mathbb{Z}$ of order k; moreover, these are the only subgroups of $\mathbb{Z}/n\mathbb{Z}$.

Definition:

We define the **Euler phi function** $\phi(n)$ to be the number of positive integers less than n and relatively prime to n (n > 1).

Special case: for n = 1, we set $\phi(1) = 1$.

Note:

 $\phi(n) = |U(n)|.$

Examples:

 $\phi(3) = 2, \ \phi(12) = 4.$ Let p be prime. Then $\phi(p) = p - 1.$

Theorem 4.4:

If *d* is a positive divisor of *n*, the number of elements of order *d* in a cyclic group of order *n* is $\phi(d)$.

(From Chapter 5, page 96)

Cycle Notation

We have seen how to specify a permutation as a two-row table. A different, more compact notation for a permutation is **cycle notation**.

Definition:

Suppose a permutation α acts on a set $A = \{1, 2, ..., n\}$. A **cycle** of α is a list $(a_1, a_2, ..., a_m)$ such that the $\{a_i\}$ are a subset of A and $a_{i+1} = a_i \alpha$ (or $\alpha(a_i)$) for $0 \le i \le m - 1$, and $a_1 = a_m \alpha$ (or $\alpha(a_m)$).

We say that we write a permutation in **cycle notation** when we write it as a sequence of all its cycles.

Examples:

Let A be the set $\{1, 2, 3, 4\}$. Let α be the permutation

$$\alpha = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{array} \right]$$

In cycle notation, $\alpha = (123)(4)$.

Consider the permutations R and F.

$$R = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array} \right]$$

In cycle notation, R = (1234).

$$F = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array} \right]$$

In cycle notation, F = (12)(34).

Homework Assignment 4

Reading Assignment:

Review chapters 1–4 and the first part of 5.

Homework problems:

Chapter 2: 8, 14, 17, 20, 36

Chapter 3: 11, 14, 17, 18, 24

Chapter 4: 7, 16, 19, 22, 39