MA441: Algebraic Structures I

Lecture 8

29 September 2003

Homework 2

Chapter 2, Problem 14:

Let G be a group with the following property:

If a, b, and c belong to G and $a b=c a$, then $b=c$.

Prove that G is Abelian.

Please include this in Homework 4.

Review from Lecture 7:

Corollary 2 to Theorem 4.1:

Let G be a group and let $a \in G$ have order n. If $a^{k}=e$, then $|a|=n$ divides k.

Theorem 4.2:

Let a be an element of order n in a group and let k be a positive integer. Then

$$
\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(n, k)}\right\rangle
$$

and

$$
\left|a^{k}\right|=\frac{n}{\operatorname{gcd}(n, k)}
$$

Corollary 1 :

Let $|a|=n$. Then $\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle$ iff $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$.

Corollary 2:

Let $G=\langle a\rangle$ be a cyclic group of order n. Then $G=\left\langle a^{k}\right\rangle$ iff $\operatorname{gcd}(n, k)=1$.

Corollary 3:

An integer k in $\mathbb{Z} / n \mathbb{Z}$ is a generator of $\mathbb{Z} / n \mathbb{Z}$ iff $\operatorname{gcd}(n, k)=1$.

Theorem 4.3: Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a\rangle|=n$, then the order of any subgroup of $\langle a\rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a\rangle$ has exactly one subgroup of order k, namely, $\left\langle a^{n / k}\right\rangle$.

We proved last time:

Claim 1:

Every subgroup of a cyclic group is cyclic.

Proof of Theorem 4.3:

Claim 2: if $|\langle a\rangle|=n$, then the order of any subgroup of $\langle a\rangle$ is a divisor of n.

Let H be any subgroup of $\langle a\rangle$.

We've shown that $H=\left\langle a^{m}\right\rangle \leq\langle a\rangle$ for some $m>0$.

We know $\left(a^{m}\right)^{n}=\left(a^{n}\right)^{m}=e^{m}=e$.

What can we say about the order of a^{m} ? (Consider Corollary 2 to Theorem 4.1)

This corollary tells us that $\left|a^{m}\right|$ divides n.

Therefore the order of $H,|H|=\left|a^{m}\right|$, is a divisor of n.

Claim 3: For each positive divisor k of n, the group $\langle a\rangle$ has a subgroup of order k.

What is the logical choice for such a subgroup?
Why does it have order k ?

The subgroup $\left\langle a^{n / k}\right\rangle$ has order k :

$$
\left(a^{n / k}\right)^{k}=a^{n}=e
$$

Why does this have order exactly equal to k ?

From Theorem 4.2,

$$
\left|a^{n / k}\right|=\frac{n}{\operatorname{gcd}(n, n / k)}
$$

Since k divides n, so does n / k. Therefore the order is $n /(n / k)=k$.

Claim 4: $\left\langle a^{n / k}\right\rangle$ is the unique subgroup of order k in $\langle a\rangle$.

Suppose H is any subgroup of order $k, H \leq\langle a\rangle$.

Then by the first Claim, $H=\left\langle a^{s}\right\rangle$ for some s that divides n.

Then $s=\operatorname{gcd}(n, s)$ and $|H|=n / s$.

What can we say about s and k ?

By assumption, $|H|=k$, which equals n / s.
So $s=n / k$, which means $H=\left\langle a^{n / k}\right\rangle$.
Since any subgroup of order k is equal to this one, it is the unique subgroup of order k.

Corollary: Subgroups of $\mathbb{Z} / n \mathbb{Z}$

For each positive divisor k of n, the set $\langle n / k\rangle$ is the unique subgroup of $\mathbb{Z} / n \mathbb{Z}$ of order k; moreover, these are the only subgroups of $\mathbb{Z} / n \mathbb{Z}$.

Definition:

We define the Euler phi function $\phi(n)$ to be the number of positive integers less than n and relatively prime to $n(n>1)$.

Special case: for $n=1$, we set $\phi(1)=1$.

Note:
$\phi(n)=|U(n)|$.

Examples:

$\phi(3)=2, \phi(12)=4$.
Let p be prime. Then $\phi(p)=p-1$.

Theorem 4.4:

If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is $\phi(d)$.
(From Chapter 5, page 96)

Cycle Notation

We have seen how to specify a permutation as a two-row table. A different, more compact notation for a permutation is cycle notation.

Definition:

Suppose a permutation α acts on a set $A=$ $\{1,2, \ldots, n\}$. A cycle of α is a list $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ such that the $\left\{a_{i}\right\}$ are a subset of A and $a_{i+1}=a_{i} \alpha\left(\right.$ or $\left.\alpha\left(a_{i}\right)\right)$ for $0 \leq i \leq m-1$, and $a_{1}=a_{m} \alpha\left(\right.$ or $\left.\alpha\left(a_{m}\right)\right)$.

We say that we write a permutation in cycle notation when we write it as a sequence of all its cycles.

Examples:

Let A be the set $\{1,2,3,4\}$. Let α be the permutation

$$
\alpha=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right]
$$

In cycle notation, $\alpha=(123)(4)$.

Consider the permutations R and F.

$$
R=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right]
$$

In cycle notation, $R=$ (1234).

$$
F=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right]
$$

In cycle notation, $F=(12)(34)$.

Homework Assignment 4

Reading Assignment:

Review chapters 1-4 and the first part of 5 .

Homework problems:

Chapter 2: 8, 14, 17, 20, 36

Chapter 3: 11, 14, 17, 18, 24

Chapter 4: 7, 16, 19, 22, 39

