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Homework 2

Chapter 2, Problem 14:

Let G be a group with the following property:

If a, b, and c belong to G and ab = ca,

then b = c.

Prove that G is Abelian.

Please include this in Homework 4.
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Review from Lecture 7:

Corollary 2 to Theorem 4.1:

Let G be a group and let a ∈ G have order n.

If ak = e, then |a| = n divides k.

Theorem 4.2:

Let a be an element of order n in a group and

let k be a positive integer. Then

〈ak〉 = 〈agcd(n,k)〉

and

|ak| =
n

gcd(n, k)
.
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Corollary 1:

Let |a| = n. Then 〈ai〉 = 〈aj〉 iff

gcd(n, i) = gcd(n, j).

Corollary 2:

Let G = 〈a〉 be a cyclic group of order n. Then

G = 〈ak〉 iff gcd(n, k) = 1.

Corollary 3:

An integer k in Z/nZ is a generator of Z/nZ iff

gcd(n, k) = 1.

4



Theorem 4.3: Fundamental Theorem of

Cyclic Groups

Every subgroup of a cyclic group is cyclic. More-

over, if |〈a〉| = n, then the order of any sub-

group of 〈a〉 is a divisor of n; and, for each

positive divisor k of n, the group 〈a〉 has ex-

actly one subgroup of order k, namely, 〈an/k〉.

We proved last time:

Claim 1:

Every subgroup of a cyclic group is cyclic.
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Proof of Theorem 4.3:

Claim 2: if |〈a〉| = n, then the order of any

subgroup of 〈a〉 is a divisor of n.

Let H be any subgroup of 〈a〉.

We’ve shown that H = 〈am〉 ≤ 〈a〉 for some

m > 0.

We know (am)n = (an)m = em = e.

What can we say about the order of am?

(Consider Corollary 2 to Theorem 4.1)
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This corollary tells us that |am| divides n.

Therefore the order of H, |H| = |am|, is a divi-

sor of n.
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Claim 3: For each positive divisor k of n,

the group 〈a〉 has a subgroup of order k.

What is the logical choice for such a subgroup?

Why does it have order k?
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The subgroup 〈an/k〉 has order k:

(an/k)k = an = e.

Why does this have order exactly equal to k?
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From Theorem 4.2,

|an/k| =
n

gcd(n, n/k)
.

Since k divides n, so does n/k. Therefore the

order is n/(n/k) = k.
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Claim 4: 〈an/k〉 is the unique subgroup of

order k in 〈a〉.

Suppose H is any subgroup of order k, H ≤ 〈a〉.

Then by the first Claim, H = 〈as〉 for some s

that divides n.

Then s = gcd(n, s) and |H| = n/s.

What can we say about s and k?
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By assumption, |H| = k, which equals n/s.

So s = n/k, which means H = 〈an/k〉.

Since any subgroup of order k is equal to this

one, it is the unique subgroup of order k.
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Corollary: Subgroups of Z/nZ

For each positive divisor k of n, the set 〈n/k〉 is

the unique subgroup of Z/nZ of order k; more-

over, these are the only subgroups of Z/nZ.
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Definition:

We define the Euler phi function φ(n) to be

the number of positive integers less than n and

relatively prime to n (n > 1).

Special case: for n = 1, we set φ(1) = 1.

Note:

φ(n) = |U(n)|.

Examples:

φ(3) = 2, φ(12) = 4.

Let p be prime. Then φ(p) = p − 1.
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Theorem 4.4:

If d is a positive divisor of n, the number of

elements of order d in a cyclic group of order

n is φ(d).
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(From Chapter 5, page 96)

Cycle Notation

We have seen how to specify a permutation as

a two-row table. A different, more compact

notation for a permutation is cycle notation.

Definition:

Suppose a permutation α acts on a set A =

{1,2, . . . , n}. A cycle of α is a list (a1, a2, . . . , am)

such that the {ai} are a subset of A and

ai+1 = aiα (or α(ai)) for 0 ≤ i ≤ m − 1, and

a1 = amα (or α(am)).
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We say that we write a permutation in cycle

notation when we write it as a sequence of all

its cycles.

Examples:

Let A be the set {1,2,3,4}. Let α be the

permutation

α =

[
1 2 3 4
2 3 1 4

]

In cycle notation, α = (123)(4).
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Consider the permutations R and F .

R =

[
1 2 3 4
2 3 4 1

]

In cycle notation, R = (1234).

F =

[
1 2 3 4
2 1 4 3

]

In cycle notation, F = (12)(34).
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Homework Assignment 4

Reading Assignment:

Review chapters 1–4 and the first part of 5.

Homework problems:

Chapter 2: 8, 14, 17, 20, 36

Chapter 3: 11, 14, 17, 18, 24

Chapter 4: 7, 16, 19, 22, 39
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