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Exercise 16 from Chapter 3:

Let G be a group, and let a ∈ G. Prove that

C(a) = C(a−1).

C(a) = {x ∈ G : xa = ax}.

Suppose g ∈ C(a).

Then ga = ag.
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By multiplying both sides on the left and right

by a−1, we see that ga = ag iff a−1g = ga−1

because

a−1gaa−1 = a−1aga−1 iff

a−1ge = ega−1.

This is exactly the condition for g to be in the

centralizer of C(a−1) because

C(a−1) = {x ∈ G : xa−1 = a−1x}.
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Review from Lecture 8:

Theorem 4.3: Fundamental Theorem of

Cyclic Groups

Every subgroup of a cyclic group is cyclic. More-

over, if |〈a〉| = n, then the order of any sub-

group of 〈a〉 is a divisor of n; and, for each

positive divisor k of n, the group 〈a〉 has ex-

actly one subgroup of order k, namely, 〈an/k〉.
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Definition:

We define the Euler phi function φ(n) to be

the number of positive integers less than n and

relatively prime to n (n > 1).

Special case: for n = 1, we set φ(1) = 1.
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Cycle notation for permutations

The cycle (a1, . . . , am) denotes a mapping that

sends ai to ai+1 for 1 ≤ i ≤ m − 1 and sends

am to a1.

We say such a cycle has length m.
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When a permutation fixes an element (the el-

ement forms a cycle of length 1), we can drop

it from the cycle notation.

It’s easy to compose permutations written in

cycle notation.

Example:

Consider R = (1234), F = (12)(34).

R2 = (1234)(1234) =?

R2 = (13)(24).
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RF = (1234)(12)(34) =?

RF = (1)(24)(3) = (24). (diagonal flip)

FR = (12)(34)(1234) =?

FR = (13)(2)(4) = (13). (diagonal flip)

(FR)2 = (13)(13) = e.
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Theorem 4.4:

If d is a positive divisor of n, the number of

elements of order d in a cyclic group of order

n is φ(d).

Proof:

By Theorem 4.3, there is exactly one subgroup

of order d, say 〈a〉.

Every element of order d also generates 〈a〉.

By Corollary 2 of Theorem 4.2, an element ak

generates 〈a〉 iff gcd(k, d) = 1, that is, k is

relatively prime to d. There are exactly φ(d)

such k.
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Corollary:

In a finite group the number of elements of

order d is divisible by φ(d).

Idea of proof:

Find all copies of the cyclic group of order d

that sit inside the finite group. These copies

must have no elements of order d in common,

and they each have φ(d) elements of order d.
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Proof:

Let G be a finite group.

If G has no elements of order d, then the state-

ment is true because any integer divides zero.

Now suppose that a ∈ G and has order d. By

Theorem 4.4, we know that 〈a〉 has φ(d) ele-

ments of order d.

If all elements of order d in G are in 〈a〉, then

we are done.
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Otherwise, choose b ∈ G of order d such that

b 6∈ G.

Can the two cyclic subgroups 〈a〉 and 〈b〉 meet

in an element of order d?

Suppose c has order d and is contained in both

cyclic subgroups.
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Since c has order d and is contained in 〈a〉, then

〈c〉 = 〈a〉.

The same is true for 〈b〉, which also equals 〈c〉.

So 〈a〉 = 〈b〉, which contradicts our choice of b

not being in 〈a〉.
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Since all cyclic subgroups of order d each have

φ(d) elements of order exactly equal to d and

have no such elements in common, the number

of elements of order d in a finite group is a

multiple of φ(d).
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