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Review from Lecture 11:

We showed how to organize a list of the sub-

groups of a group into a diagram called the

lattice of subgroups.

We reviewed the definition of a permutation.

We defined the group of permutations of de-

gree n, denoted Sn, and showed that it has

order n!.

2



Theorem 5.1: Products of Disjoint Cycles

Every permutation of a finite set can be writ-

ten as a cycle or as a product of disjoint cycles.

Theorem 5.2: Disjoint Cycles Commute

If the pair of cycles α = (a1a2 . . . am) and

β = (b1b2 . . . bn) have no entries in common,

then αβ = βα.
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Theorem 5.3: The Order of a Permuta-

tion

The order of a permutation of a finite set writ-

ten in disjoint cycle form is the least common

multiple of the lengths of the cycles.

Idea of Proof:

The disjoint cycles commute with each other.

Therefore if we have a permutation α written

as

α = (a1a2 . . . am)(b1b2 . . . bk) · · · (c1c2 . . . cs),

then

αn = (a1a2 . . . am)n(b1b2 . . . bk)
n · · · (c1c2 . . . cs)

n.

When n is the LCM of m, k, s, and the other

cycle lengths, that is the lowest power of α

that equals the identity.
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Proof:

First, observe that a cycle of length n has order

n. (Exercise 5.2)

Next, suppose that α and β are disjoint cycles

of lengths m and n, respectively.

Let k be the LCM of m and n.

Then (αβ)k = αkβk = e.

Let t be the order of αβ, that is, t = |αβ|.

By Corollary 2 to Theorem 4.1, we know that

t divides k.

5



By definition of t,

(αβ)t = e = αtβt,

so αt = β−t.

Since α and β are assumed to be disjoint cycles,

it is also true that αt and βt are disjoint cycles.

Therefore αt and βt must both be the identity,

since they are inverses, yet any element is fixed

by either αt or βt since they are disjoint.

αt = e implies m|t.
βt = e implies n|t.
So t equals the LCM of m and n.
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We can extend the argument to more than two

disjoint cycles by similar reasoning.

We can prove this by induction, treating the

above argument as the base case. We assume

the result is true for n disjoint cycles, then

show it is true for n+1 disjoint cycles by treat-

ing the first n cycles as the permutation α and

the (n + 1)-th cycle as β.

The LCM of the lengths of the cycles is the

same, no matter how you group them.
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Definition:

A cycle of length 2, i.e., of the form (ab) is

called a transposition or 2-cycle.

Theorem 5.4: Product of 2-cycles

Every permutation in Sn, n > 1, is a product

of 2-cycles.

Proof:

Note that the identity can be written as (12)(12).

A k-cycle (a1a2 . . . ak) can be written as

(a1a2 . . . ak) = (a1a2)(a1a3) · · · (a1ak−1)(a1ak).

Since any permutation can be written as a

product of disjoint cycles, we can decompose

any permutation into a product of transposi-

tions by decomposing each disjoint cycle in the

product.
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Examples:

(12345) = (12)(13)(14)(15).

(1632)(457) = (16)(13)(12)(45)(47).

Note that our order is the reverse of Gallian’s

because we compose from left to right.
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Note that decomposing a permutation into a

product of transpositions is not unique.

(12345) = (12)(13)(14)(15).

(12345) = (13)(23)(25)(12)(25)(45).

While the number of transpositions may vary,

we will see that the parity of the number does

not.
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Lemma:

If β1β2 · · ·βr−1βr = e in Sn (for some n), where

the βi are transpositions, then r is even.

Proof:

Clearly r 6= 1, since a single transposition is

not the identity.

When r = 2, we are done.

We proceed by (strong) induction.

Suppose that the theorem is true for any inte-

ger less than r, r > 2. We will show it holds

for r.
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Sketch: Rewrite the permutation in such a
way that we shift the last occurrence of an in-
teger a as far left as possible until we eventually
remove a from the permutation.

Proof:
The last pair of transpositions must be one of
these four cases:

1. e = (ab)(ab),

2. (ab)(bc) = (ac)(ab),

3. (ac)(cb) = (bc)(ab),

4. (ab)(cd) = (cd)(ab).

If a occurs in the last transposition, then we
can rewrite the last pair so that a no longer
occurs in the last transposition.
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Successively rewrite βr−1βr, then βr−2βr−1,

βr−3βr−2, and so on, as long as the integer a

still occurs in the permutation.

Eventually, we will reach the first case above,

(ab)(ab), where we can cancel out two trans-

positions.

If we don’t, then the left-most transposition

β1 will have the only occurrence of a. This

would contradict the assumption that the per-

mutation is the identity, because if only one

transposition contains a, then the permutation

does not fix a.
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Once we cancel the two transpositions, then

there are only r − 2 transpositions in the per-

mutation, and we can apply our induction hy-

pothesis.

Theorem 5.5: Always Even or Odd

If a permutation α can be expressed as a prod-

uct of an even number of transpositions, then

every decomposition of α into a product of

transpositions must have an even number of

transpositions. In symbols, if

α = β1β2 · · ·βr = γ1γ2 · · · γs,

where the {βi} and {γi} are transpositions, then

r and s are both even or both odd.
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Proof:

Write the identity as

αα−1 = (γ1γ2 · · · γs) · (β1β2 · · ·βr)
−1

e = γ1γ2 · · · γsβ
−1
r · · ·β−1

2 β−1
1

e = γ1γ2 · · · γsβr · · ·β2β1.

Note that a transposition is its own inverse.

By our previous lemma, r+s is even. So r and

s are either both even or both odd.

15



Definition:

A permutation that can be expressed as a prod-

uct of an even number of transpositions is

called an even permutation. A permutation

that can be expressed as a product of an odd

number of transpositions is called an odd per-

mutation.

Theorem 5.6: Even Permutations Form a

Group

The set of even permutations in Sn forms a

subgroup of Sn.

(See exercise 5.13.)
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Definition:

The group of even permutations on n symbols

is denoted An and is called the alternating

group of degree n.

Theorem 5.7

For n > 1, the order of An is (n!)/2.

Proof:

For each odd permutation α, the permutation

(12)α is even. Let β be any other odd permu-

tation (β 6= α). Then (12)α 6= (12)β. So the

number of even permutations is greater than

or equal to the number of odd permutations.
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The same argument holds when we take α, β

odd to show that there are at least as many

odd permutations as even ones.

Therefore, there are as many even permuta-

tions as odd permutations, so An has half the

order of Sn.
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