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Review from Lecture 12:

Theorem 5.3: The Order of a Permuta-

tion

The order of a permutation of a finite set writ-

ten in disjoint cycle form is the least common

multiple of the lengths of the cycles.

Definition:

A cycle of length 2, i.e., of the form (ab) is

called a transposition or 2-cycle.

Theorem 5.4: Product of 2-cycles

Every permutation in Sn, n > 1, is a product

of 2-cycles.
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Lemma:

If β1β2 · · ·βr−1βr = e in Sn (for some n), where

the βi are transpositions, then r is even.

Theorem 5.5: Always Even or Odd

If a permutation α can be expressed as a prod-

uct of an even number of transpositions, then

every decomposition of α into a product of

transpositions must have an even number of

transpositions. In symbols, if

α = β1β2 · · ·βr = γ1γ2 · · · γs,

where the {βi} and {γi} are transpositions, then

r and s are both even or both odd.
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Definition:

A permutation that can be expressed as a prod-

uct of an even number of transpositions is

called an even permutation. A permutation

that can be expressed as a product of an odd

number of transpositions is called an odd per-

mutation.

Theorem 5.6: Even Permutations Form a

Group

The set of even permutations in Sn forms a

subgroup of Sn.
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Definition:

The group of even permutations on n symbols

is denoted An and is called the alternating

group of degree n.

Theorem 5.7

For n > 1, the order of An is (n!)/2.
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Chapter 6: Isomorphisms

We have seen that the dihedral group D4 can

be represented three different ways.

1: The symmetries of a square

We let R denote a counterclockwise rotation

by 90 degrees and let F denote a flip about

the vertical axis of a square.

2: A permutation group

Consider permutations acting on {1,2,3,4}. Let

R = (1432) and F = (12)(34). Then D4 is the

subgroup 〈R, F 〉 of S4.
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3: A matrix group

Consider four points in R2 that form a square:

(−1,1), (1,1), (1,−1), and (−1,−1). Let

R =

(
0 1
−1 0

)
,

and

F =

(
−1 0
0 1

)
.

These are each three different realizations of

the abstract group D4.

In a certain sense, these three groups are the

same. This notion of sameness can be pre-

cisely captured by the concept of isomorphism.
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Isomorphism comes from the Greek and means

“same form”.

Definition:

An isomorphism φ from a group G1 to a group

G2 is a one-to-one mapping (or function) from

G1 onto G2 that preserves the group operation.

That is, for every a, b ∈ G1,

φ(ab) = φ(a)φ(b).

To distinguish the two different group opera-

tions, let �1 and �2 denote the group opera-

tions on G1 and G2, respectively. Then we can

write

φ(a�1 b) = φ(a)�2 φ(b).

If there is an isomorphism from G1 onto G2,

then we say that G1 and G2 are isomorphic

and write G1 ≈ G2 (or G1
∼= G2).
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There are four steps to show that two groups

are isomorphic:

Step 1: Mapping

Define a function from G1 to G2 that is a can-

didate for an isomorphism.

Step 2: One-to-one

Prove that φ is one-to-one (injective). That

is, for any a, b ∈ G1, show that φ(a) = φ(b) in

G2 implies a = b.

Step 3: Onto

Prove that φ is onto (surjective). That is, for

any g2 ∈ G2, there is a g1 ∈ G1 such that

φ(g1) = g2.
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Step 4: Preserves Operation

Prove that φ preserves group operations (i.e.,

φ is operation-preserving). That is, show that

φ(ab) = φ(a)φ(b) for any a, b ∈ G1.

Later on, we’ll see that you can have the first

and fourth properties without necessarily hav-

ing the mapping be one-to-one and onto. This

more general notion is called homomorphism.

We’ll refer to the fourth property as the

homomorphism property.
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The inverse test for isomorphisms

If φ is a homomorphism from G1 to G2 and ψ

is a homomorphism from G2 to G1 such that

φ ◦ ψ = ψ ◦ φ = 1 (identity),

that is, φ has an inverse ψ, then φ and ψ are

isomorphisms.
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The one-to-one and onto properties are satis-

fied for φ:

one-to-one: if φ(a) = φ(b), then apply ψ to

both sides:

ψ(φ(a)) = ψ(φ(b))

implies a = b.

onto: if g2 ∈ G2, then let g1 = ψ(g2).

Then φ(g1) = g2.

The same reasoning shows ψ is an isomorphism

(switching φ with ψ).
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Example 1:

Let G1 be (R,+), the real numbers under ad-

dition.

Let G2 be (R+, ·), the positive real numbers

under multiplication.

Then G1 and G2 are isomorphic under the map

φ(x) = 2x.

Check the four properties:

1) φ clearly maps G1 to G2.

2, 3) φ is one-to-one and onto because we have

the logarithm (base 2) as an inverse.

4) φ(x+ y) = 2x+y = 2x · 2y = φ(x)φ(y).
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Example 2:

Any infinite cyclic group is isomorphic to Z.

The finite cyclic group 〈a〉 generated by a of

order n is isomorphic to Z/nZ.

Let us show there is an isomorphism in the

finite case.

Let φ map ak to k.

Clearly φ is one-to-one by Theorem 4.1 which

says that ai = aj iff n divides i− j. Certainly φ

is onto, since for any k in Z/nZ, we have that

ak maps to it.
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The homomorphism property is satisfied:

φ(aras) = φ(ar+s) = r+ s = φ(ar) + φ(as),

where addition on the right is modulo n.

For instance, U(43) and U(49) are both cyclic

of order 42, hence they are both isomorphic to

Z/42Z.
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(Non)Example 3:

The mapping from (R,+) to itself that sends

x to φ(x) = x3 is not an isomorphism because

(x+ y)3 6= x3 + y3. The homomorphism prop-

erty is not satisfied.

(Non)Example 5:

U(10) 6≈ U(12).

Note that U(12) = {1,5,7,11}, and all ele-

ments have order 2.

On the other hand, U(10) = {1,3,7,9}, and it

is cyclic.
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The orders of the elements are 1,4,4,2 respec-

tively.

This difference in the orders of elements shows

that the groups can not be isomorphic. We will

use this discrepancy to show that any candi-

date function is not an isomorphism.

Suppose that φ is an isomorphism from U(10)

to U(12). Then

φ(9) = φ(3 · 3) = φ(3) · φ(3) = 1,

since all elements of U(12) have order 2.

However

φ(1) = φ(1 · 1) = φ(1) · φ(1),

so φ(1) = 1.

This map φ violates the one-to-one condition,

because both 9 and 1 map to 1.
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Theorem 6.1: Cayley’s Theorem

Every group is isomorphic to a group of per-

mutations.

Proof:

Let G be any group. We will show that G can

be viewed as a group of permutations acting

on its own elements.

For any g ∈ G, let Tg denote the function

Tg(x) = gx (∀x ∈ G),

that is, Tg is left multiplication by g.

Tg is a permutation on the set of elements of

G. (See Exercise 6.21.)
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The set {Tg : g ∈ G} forms a group under com-

position, where Te is the identity and Tg−1 is

the inverse of Tg. (See Exercise 6.8.)

Let φ map g to Tg. We will show it is an

isomorphism.

It is one-to-one. If Tg = Th, then we apply

them both to the identity and get

Tg(e) = Th(e), so ge = he (left multiplication)

and g = h.

It is clearly onto, since g maps to Tg.
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The homomorphism property holds because

φ(xy) = Txy = TxTy = φ(x)φ(y).

Therefore G is isomorphic to the group

{Tg : g ∈ G}.

We call this group of permutations the left

regular representation of G.
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Homework Assignment 7

Reading Assignment:

Chapter 6: pages 118–129

Homework Problems:

Chapter 4: 53, 60

Chapter 5: 13, 16, 21, 26, 40

Chapter 6: 1, 2, 3, 4, 5

21


