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Review from Lecture 13:

We looked at how the dihedral group D4 can

be viewed as

1. the symmetries of a square,

2. a permutation group, and

3. a matrix group.

This is an example of an isomorphism

between groups.
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Example 1:

The group (R,+), the real numbers under ad-

dition, is isomorphic to the group (R+, ·), the

positive real numbers under multiplication.

The isomorphism mapping is the exponential

map φ(x) = 2x.

Example 2:

Any infinite cyclic group is isomorphic to Z.

The finite cyclic group 〈a〉 generated by a of

order n is isomorphic to Z/nZ.

The isomorphism mapping sends

ak ∈ 〈a〉 to k ∈ Z/nZ.
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(Non)Example 3:

The mapping φ(x) = x3 from (R,+) to itself

is not an isomorphism because the homomor-

phism property is not satisfied.

(Non)Example 5:

U(10) is not isomorphic to U(12).

Although both groups have order four, U(10)

is cyclic and therefore has an element of or-

der four. On the other hand, all non-identity

elements of U(12) have order 2.
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Definition:

An isomorphism φ from a group G1 to a group

G2 is a one-to-one mapping (or function) from

G1 onto G2 that preserves the group operation.

That is, for every a, b ∈ G1,

φ(ab) = φ(a)φ(b).

If there is an isomorphism from G1 onto G2,

then we say that G1 and G2 are isomorphic

and write G1 ≈ G2 (or G1
∼= G2).
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There are four steps to show that two groups

are isomorphic:

Step 1: Mapping

Define a function from G1 to G2 that is a can-

didate for an isomorphism.

Step 2: One-to-one

Prove that φ is one-to-one (injective). That

is, for any a, b ∈ G1, show that φ(a) = φ(b) in

G2 implies a = b.

Step 3: Onto

Prove that φ is onto (surjective). That is, for

any g2 ∈ G2, there is a g1 ∈ G1 such that

φ(g1) = g2.
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Step 4: Preserves Operation

Prove that φ preserves group operations (i.e.,

φ is operation-preserving). That is, show that

φ(ab) = φ(a)φ(b) for any a, b ∈ G1.

Definition:

A mapping from G1 to G2 that satisfies the

fourth property is called a homomorphism.
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Theorem 6.1: Cayley’s Theorem

Every group is isomorphic to a group of per-
mutations.

Proof:
Let G be any group. We will show that G can
be viewed as a group of permutations acting
on its own elements.

For any g ∈ G, let Tg denote the function

Tg : G → G via x 7→ xg,

that is, Tg is right multiplication by g.

Note: Gallian uses left multiplication Tg since
he composes group operations from right to
left. We compose from left to right, so we use
right multiplication for Tg.

Write xTg or Tg(x) for the image of x under Tg:

xTg = Tg(x) = xg.
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Tg is a permutation on the set of elements of

G. (See Exercise 6.21.)

The set {Tg : g ∈ G} forms a group under com-

position, where Te is the identity and Tg−1 is

the inverse of Tg. (See Exercise 6.8.)

Let φ map g to Tg. We will show it is an

isomorphism.

It is one-to-one. If Tg = Th, then we apply

them both to the identity and get

Tg(e) = Th(e) (eTg = hTg) so eg = eh (right

multiplication) and g = h.

It is clearly onto, since g maps to Tg.
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The homomorphism property holds because

φ(xy) = Txy = TxTy = φ(x)φ(y).

Therefore G is isomorphic to the group

{Tg : g ∈ G}.

We call this group of permutations the

right regular representation of G.
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Example:

We form the right regular representation of D3.

We label the elements of D3 and write each in

geometric and permutation notation:

Label Geom. Perm.
1 e ()
2 R (132)
3 R2 (123)
4 D1 (23)
5 D2 (13)
6 D3 (12)
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Let us multiply R = (132) on the right by every

element of D3:

e · R = R

R · R = R2

R2 · R = e
D1 · R = D2
D2 · R = D3
D3 · R = D1

In labels, this is the permutation(
1 2 3 4 5 6
2 3 1 5 6 4

)
,

which is the permutation (123)(456).
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Let us multiply D1 = (23) on the right by every

element of D3:

e · D1 = D1
R · D1 = D3
R2 · D1 = D2
D1 · D1 = e

D2 · D1 = R2

D3 · D1 = R

In labels, this is the permutation(
1 2 3 4 5 6
4 6 5 1 3 2

)
,

which is the permutation (14)(26)(35).
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Theorem 6.2: Properties of Isomorphisms

Acting on Elements

Suppose that φ : G1 → G2 is an isomorphism.

Then the following properties hold.

1. φ sends the identity of G1 to the identity

of G2.

2. For every integer n and for every group

element a in G1, φ(an) = (φ(a))n.

3. For any elements a, b ∈ G1, a and b com-

mute iff φ(a) and φ(b) commute.

4. The order of a, |a| equals |φ(a)| for all a ∈
G1 (isomorphisms preserve orders).
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5. For a fixed integer k and a fixed group ele-

ment b in G1, the equation xk = b has the

same number of solutions in G1 as does

the equation xk = φ(b) in G2.

Proof:

Part 1: φ(e1) = e2, where e1, e2 are the identity

elements of G1, G2, respectively.

Since e1 = e1e1,

φ(e1) = φ(e1e1) = φ(e1)φ(e1),

by the homomorphism property. By cancelling

φ(e1) from both sides, we have e2 = φ(e1).



Part 2: When n is positive,

φ(an) = φ(
n︷ ︸︸ ︷

a · a · · · a) =

n︷ ︸︸ ︷
φ(a) · · ·φ(a) = φ(a)n.

The inverse of an element is preserved under

an isomorphism:

φ(e1) = φ(gg−1) = φ(g)φ(g−1) = e2.

Then φ(g−1) is the inverse of φ(g), that is,

φ(g−1) = φ(g)−1.

Part 4: isomorphisms preserve orders.

Note an = e1 iff φ(a)n = e2.
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Definition:

An isomorphism from a group G onto itself is

called an automorphism of G.

Definition:

Let G be a group, and let a ∈ G. The function

φa defined by φa(x) = a−1xa for all x ∈ G, is

called the inner automorphism of G induced

by a.
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