MA441: Algebraic Structures I

Lecture 15

27 October 2003

Correction for Lecture 14:

I should have used multiplication on the right for Cayley's theorem.

Theorem 6.1: Cayley's Theorem

Every group is isomorphic to a group of permutations.

Proof:

Let G be any group. We will show that G can be viewed as a group of permutations acting on its own elements.

For any $g \in G$, let T_g denote the function

 $T_g: G \to G \text{ via } x \mapsto xg,$

that is, T_g is right multiplication by g.

Note: Gallian uses left multiplication for T_g since he composes group operations from right to left. We compose from left to right, so we use right multiplication for T_g .

Write xT_g or $T_g(x)$ for the image of x under T_g :

$$xT_g = T_g(x) = xg.$$

For emphasis, I may write $(x)T_g$ for xT_g .

 T_g is a permutation on the set of elements of G. (See Exercise 6.21.)

The set $\{T_g : g \in G\}$ forms a group under composition, where T_e is the identity and $T_{g^{-1}}$ is the inverse of T_g . (See Exercise 6.8.)

Let ϕ map g to T_g . We will show it is an isomorphism.

It is one-to-one. If $T_g = T_h$, then we apply them both to the identity and get $(e)T_g = (h)T_g$ so eg = eh (right multiplication) and g = h.

It is clearly onto, since g maps to T_g .

The homomorphism property holds because

$$\phi(xy) = T_{xy} = T_x T_y = \phi(x)\phi(y).$$

We check this by applying $\phi(xy)$ to any $g \in G$:

 $(g)\phi(xy) = (g)T_{xy} = gxy = (g)T_xT_y = (g)\phi(x)\phi(y).$

Therefore G is isomorphic to the group $\{T_g : g \in G\}.$

We call this group of permutations the **right regular representation** of G.

Example:

We form the right regular representation of D_3 .

We label the elements of D_3 and write each in geometric and permutation notation:

Label	Geom.	Perm.
1	e	()
2	R	(132)
3	R^2	(123)
4	D 1	(23)
5	D2	(13)
6	D 3	(12)

Let us multiply R = (132) on the right by every element of D_3 :

$e \cdot R$	=	R
$R \cdot R$	=	R^2
$R^2 \cdot R$	=	e
$D1 \cdot R$	=	D2
$D2 \cdot R$	=	D3
$D3 \cdot R$	=	D 1

In labels, this is the permutation

which is the permutation (123)(456).

Let us multiply D1 = (23) on the right by every element of D_3 :

$e \cdot D$ 1	=	D 1
$R \cdot D$ 1	=	D 3
$R^2 \cdot D1$	=	D2
$D1 \cdot D1$	=	e
$D2 \cdot D1$	=	R^2
$D3 \cdot D1$	=	R

In labels, this is the permutation

which is the permutation (14)(26)(35).

Consider the composition $R \cdot D1 = D3 = (12)$.

Multiply D3 = (12) on the right by every element of D_3 :

$e \cdot D$ 3	=	D 3
$R \cdot D$ 3	=	D2
$R^2 \cdot D3$	=	D 1
$D1 \cdot D3$	=	R^2
$D2 \cdot D3$	=	R
$D3 \cdot D3$	=	e

In labels, this is the permutation

which is the permutation (16)(25)(34).

In the group D_3 , $R \cdot D1 = D3$ can be represented in permutations as

$$(132)(23) = (12).$$

Applying the isomorphism $\phi : g \mapsto T_g$, we can represent the operation as permutations in S_6 as

 $(123)(456) \cdot (14)(26)(35) = (16)(25)(34).$

Let's summarize how we transform the group operation from D_3 to its right regular representation in S_6 .

$$\phi(R \cdot D1) = \phi((132)(23)) = \phi((132))\phi((23))$$

$$\phi((132))\phi((23)) = (123)(456) \cdot (14)(26)(35)$$

$$(123)(456) \cdot (14)(26)(35) = (16)(25)(34)$$

$$(16)(25)(34) = \phi((12)) = \phi(D3).$$

Theorem 6.2: Properties of Isomorphisms Acting on Elements

Suppose that $\phi: G_1 \to G_2$ is an isomorphism. Then the following properties hold.

- 1. ϕ sends the identity of G_1 to the identity of G_2 .
- 2. For every integer n and for every group element a in G_1 , $\phi(a^n) = (\phi(a))^n$.
- 3. For any elements $a, b \in G_1$, a and b commute iff $\phi(a)$ and $\phi(b)$ commute.
- 4. The order of a, |a| equals $|\phi(a)|$ for all $a \in G_1$ (isomorphisms preserve orders).

5. For a fixed integer k and a fixed group element b in G_1 , the equation $x^k = b$ has the same number of solutions in G_1 as does the equation $x^k = \phi(b)$ in G_2 .

Proof:

Part 1: $\phi(e_1) = e_2$, where e_1, e_2 are the identity elements of G_1, G_2 , respectively.

Since $e_1 = e_1 e_1$,

$$\phi(e_1) = \phi(e_1 e_1) = \phi(e_1)\phi(e_1),$$

by the homomorphism property. By cancelling $\phi(e_1)$ from both sides, we have $e_2 = \phi(e_1)$.

Part 2: When n is positive,

$$\phi(a^n) = \phi(\overrightarrow{a \cdot a \cdots a}) = \overbrace{\phi(a) \cdots \phi(a)}^n = \phi(a)^n.$$

The inverse of an element is preserved under an isomorphism:

$$\phi(e_1) = \phi(gg^{-1}) = \phi(g)\phi(g^{-1}) = e_2.$$

Then $\phi(g^{-1})$ is the inverse of $\phi(g)$, that is,

$$\phi(g^{-1}) = \phi(g)^{-1}.$$

Part 3: a and b commute iff $\phi(a)$ and $\phi(b)$ commute.

We know that for a and b to commute means ab = ba.

Apply ϕ to the left and right and apply the homomorphism property.

Part 4: isomorphisms preserve orders.

Note $a^n = e_1$ iff $\phi(a)^n = \phi(e_1) = e_2$.

(Non)example: \mathbb{C}^* is not isomorphic to \mathbb{R}^* because the equation $x^4 = 1$ has a different number of solutions in each group.

Theorem 6.3: Properties of Isomorphisms Acting on Groups

Suppose that $\phi: G_1 \to G_2$ is an isomorphism. Then the following properties hold.

- 1. G_1 is Abelian iff G_2 is Abelian.
- 2. G_1 is cyclic iff G_2 is cyclic.
- 3. ϕ^{-1} is an isomorphism from G_2 to G_1 .
- 4. If $K \leq G_1$ is a subgroup, then $\phi(K) = \{\phi(k) | k \in K\}$ is a subgroup of G_2 .

Definition:

An isomorphism from a group G onto itself is called an **automorphism** of G. The set of automorphisms is denoted Aut(G).

Example 9:

Complex conjugation is an automorphism of $\mathbb C$ under addition and $\mathbb C^*$ under multiplication.

Example 10:

In \mathbb{R}^2 , $\phi(a, b) = (b, a)$ is an automorphism of \mathbb{R}^2 under componentwise addition.

Correction: Last time I should not have defined an inner automorphism to be $\phi_a(x) = axa^{-1}$ as Gallian does. To compose from left to right, we need the following definition.

Definition:

Let G be a group, and let $a \in G$. The function ϕ_a defined by $\phi_a(x) = a^{-1}xa$ for all $x \in G$, is called the

inner automorphism of G induced by a.

The set of inner automorphisms is denoted Inn(G).

Theorem 6.4: Aut(G) and Inn(G) are groups

The set of automorphisms of a group G and the set of inner automorphisms of a group are both groups under the operation of function compositions.

Proof:

(Exercise 15)

Example 13: Aut $(\mathbb{Z}/10\mathbb{Z})$ is isomorphic to U(10).

Homework Assignment 8

Reading Assignment

Chapter 6: review

Chapter 7: pages 134–138

Homework Exercises

Chapter 5: 19, 28, 31, 44

Chapter 6: 2, 6, 7, 8, 10, 11

Note: in 6.8, $T_g(x) = xg$ is right multiplication, and in 6.11, $\phi_g(x) = g^{-1}xg$.