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Correction for Lecture 14:

I should have used multiplication on the right

for Cayley’s theorem.

Theorem 6.1: Cayley’s Theorem

Every group is isomorphic to a group of per-

mutations.

Proof:

Let G be any group. We will show that G can

be viewed as a group of permutations acting

on its own elements.

For any g ∈ G, let Tg denote the function

Tg : G → G via x 7→ xg,

that is, Tg is right multiplication by g.
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Note: Gallian uses left multiplication for Tg

since he composes group operations from right

to left. We compose from left to right, so we

use right multiplication for Tg.

Write xTg or Tg(x) for the image of x under Tg:

xTg = Tg(x) = xg.

For emphasis, I may write (x)Tg for xTg.
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Tg is a permutation on the set of elements of

G. (See Exercise 6.21.)

The set {Tg : g ∈ G} forms a group under com-

position, where Te is the identity and Tg−1 is

the inverse of Tg. (See Exercise 6.8.)

Let φ map g to Tg. We will show it is an

isomorphism.

It is one-to-one. If Tg = Th, then we apply

them both to the identity and get

(e)Tg = (h)Tg so eg = eh (right multiplication)

and g = h.

It is clearly onto, since g maps to Tg.
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The homomorphism property holds because

φ(xy) = Txy = TxTy = φ(x)φ(y).

We check this by applying φ(xy) to any g ∈ G:

(g)φ(xy) = (g)Txy = gxy = (g)TxTy = (g)φ(x)φ(y).

Therefore G is isomorphic to the group

{Tg : g ∈ G}.

We call this group of permutations the

right regular representation of G.
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Example:

We form the right regular representation of D3.

We label the elements of D3 and write each in

geometric and permutation notation:

Label Geom. Perm.
1 e ()
2 R (132)
3 R2 (123)
4 D1 (23)
5 D2 (13)
6 D3 (12)
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Let us multiply R = (132) on the right by every

element of D3:

e ·R = R

R ·R = R2

R2 ·R = e
D1 ·R = D2
D2 ·R = D3
D3 ·R = D1

In labels, this is the permutation(
1 2 3 4 5 6
2 3 1 5 6 4

)
,

which is the permutation (123)(456).
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Let us multiply D1 = (23) on the right by every

element of D3:

e ·D1 = D1
R ·D1 = D3
R2 ·D1 = D2
D1 ·D1 = e

D2 ·D1 = R2

D3 ·D1 = R

In labels, this is the permutation(
1 2 3 4 5 6
4 6 5 1 3 2

)
,

which is the permutation (14)(26)(35).
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Consider the composition R ·D1 = D3 = (12).

Multiply D3 = (12) on the right by every ele-

ment of D3:

e ·D3 = D3
R ·D3 = D2
R2 ·D3 = D1
D1 ·D3 = R2

D2 ·D3 = R
D3 ·D3 = e

In labels, this is the permutation(
1 2 3 4 5 6
6 5 4 3 2 1

)
,

which is the permutation (16)(25)(34).
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In the group D3, R · D1 = D3 can be repre-

sented in permutations as

(132)(23) = (12).

Applying the isomorphism φ : g 7→ Tg, we can

represent the operation as permutations in S6

as

(123)(456) · (14)(26)(35) = (16)(25)(34).

10



Let’s summarize how we transform the group

operation from D3 to its right regular repre-

sentation in S6.

φ(R ·D1) = φ ((132)(23)) = φ((132))φ((23))

φ((132))φ((23)) = (123)(456) · (14)(26)(35)

(123)(456) · (14)(26)(35) = (16)(25)(34)

(16)(25)(34) = φ((12)) = φ(D3).
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Theorem 6.2: Properties of Isomorphisms

Acting on Elements

Suppose that φ : G1 → G2 is an isomorphism.

Then the following properties hold.

1. φ sends the identity of G1 to the identity

of G2.

2. For every integer n and for every group

element a in G1, φ(an) = (φ(a))n.

3. For any elements a, b ∈ G1, a and b com-

mute iff φ(a) and φ(b) commute.

4. The order of a, |a| equals |φ(a)| for all

a ∈ G1 (isomorphisms preserve orders).
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5. For a fixed integer k and a fixed group ele-

ment b in G1, the equation xk = b has the

same number of solutions in G1 as does

the equation xk = φ(b) in G2.

Proof:

Part 1: φ(e1) = e2, where e1, e2 are the identity

elements of G1, G2, respectively.

Since e1 = e1e1,

φ(e1) = φ(e1e1) = φ(e1)φ(e1),

by the homomorphism property. By cancelling

φ(e1) from both sides, we have e2 = φ(e1).



Part 2: When n is positive,

φ(an) = φ(
n︷ ︸︸ ︷

a · a · · · a) =

n︷ ︸︸ ︷
φ(a) · · ·φ(a) = φ(a)n.

The inverse of an element is preserved under

an isomorphism:

φ(e1) = φ(gg−1) = φ(g)φ(g−1) = e2.

Then φ(g−1) is the inverse of φ(g), that is,

φ(g−1) = φ(g)−1.
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Part 3: a and b commute iff φ(a) and φ(b)

commute.

We know that for a and b to commute means

ab = ba.

Apply φ to the left and right and apply the

homomorphism property.

Part 4: isomorphisms preserve orders.

Note an = e1 iff φ(a)n = φ(e1) = e2.

(Non)example: C∗ is not isomorphic to R∗

because the equation x4 = 1 has a different

number of solutions in each group.
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Theorem 6.3: Properties of Isomorphisms

Acting on Groups

Suppose that φ : G1 → G2 is an isomorphism.

Then the following properties hold.

1. G1 is Abelian iff G2 is Abelian.

2. G1 is cyclic iff G2 is cyclic.

3. φ−1 is an isomorphism from G2 to G1.

4. If K ≤ G1 is a subgroup, then φ(K) =

{φ(k)|k ∈ K} is a subgroup of G2.
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Definition:

An isomorphism from a group G onto itself is

called an automorphism of G. The set of

automorphisms is denoted Aut(G).

Example 9:

Complex conjugation is an automorphism of C
under addition and C∗ under multiplication.

Example 10:

In R2, φ(a, b) = (b, a) is an automorphism of

R2 under componentwise addition.
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Correction: Last time I should not have de-

fined an inner automorphism to be φa(x) =

axa−1 as Gallian does. To compose from left

to right, we need the following definition.

Definition:

Let G be a group, and let a ∈ G. The function

φa defined by φa(x) = a−1xa for all x ∈ G, is

called the

inner automorphism of G induced by a.

The set of inner automorphisms is denoted

Inn(G).
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Theorem 6.4: Aut(G) and Inn(G) are groups

The set of automorphisms of a group G and

the set of inner automorphisms of a group are

both groups under the operation of function

compositions.

Proof:

(Exercise 15)

Example 13: Aut(Z/10Z) is isomorphic to

U(10).
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Homework Assignment 8

Reading Assignment

Chapter 6: review

Chapter 7: pages 134–138

Homework Exercises

Chapter 5: 19, 28, 31, 44

Chapter 6: 2, 6, 7, 8, 10, 11

Note: in 6.8, Tg(x) = xg is right multiplication,

and in 6.11, φg(x) = g−1xg.
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