
MA441: Algebraic Structures I

Lecture 16

29 October 2003

1



Review from Lecture 15:

Theorem 6.1: Cayley’s Theorem

Every group is isomorphic to a group of per-

mutations.

Example:

φ(R · D1) = φ ((132)(23)) = φ((132))φ((23))

φ((132))φ((23)) = (123)(456) · (14)(26)(35)

(123)(456) · (14)(26)(35) = (16)(25)(34)

(16)(25)(34) = φ((12)) = φ(D3).
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Theorem 6.2: Properties of Isomorphisms

Acting on Elements

Suppose that φ : G1 → G2 is an isomorphism.

Then the following properties hold.

1. φ sends the identity of G1 to the identity

of G2.

2. For every integer n and for every group

element a in G1, φ(an) = (φ(a))n.

3. For any elements a, b ∈ G1, a and b com-

mute iff φ(a) and φ(b) commute.

4. The order of a, |a| equals |φ(a)| for all

a ∈ G1 (isomorphisms preserve orders).
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5. For a fixed integer k and a fixed group ele-

ment b in G1, the equation xk = b has the

same number of solutions in G1 as does

the equation xk = φ(b) in G2.

Proof:

Part 5:

Apply the isomorphism φ to the equation

xk = b to get φ(xk) = φ(x)k = φ(b).

Let’s rename the variable x to y in the second

equation and write yk = φ(b).

For every solution x ∈ G1 to the first equa-

tion, we get a solution y ∈ G2 to the second

equation. Because φ is one-to-one, there are

at least as many y as x.



Suppose y ∈ G2 is a solution to yk = φ(b).

Since φ is onto, there is an x ∈ G1 such that

φ(x) = y.

Now yk = φ(x)k = φ(xk) = φ(b). Since φ is

one-to-one, we know xk = b.

Therefore we have at least as many x as y, and

the number of solutions of the two equations

are equal.

(Non)example: C∗ is not isomorphic to R∗

because the equation x4 = 1 has a different

number of solutions in each group.
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Theorem 6.3: Properties of Isomorphisms

Acting on Groups

Suppose that φ : G1 → G2 is an isomorphism.

Then the following properties hold.

1. G1 is Abelian iff G2 is Abelian.

2. G1 is cyclic iff G2 is cyclic.

3. φ−1 is an isomorphism from G2 to G1.

4. If K ≤ G1 is a subgroup, then φ(K) =

{φ(k)|k ∈ K} is a subgroup of G2.
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Proof:

Part 1: follows from part 3 of Theorem 6.2,

which shows that isomorphisms preserve com-

mutativity.

Part 2: follows from part 4 of Theorem 6.2,

which shows that isomorphisms preserve order

and by noting that if G1 = 〈a〉, then

G2 = 〈φ(a)〉.
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Part 3: Since φ is one-to-one and onto, for

every y ∈ G2, there is a unique x ∈ G1 such

that φ(x) = y. Define φ−1(y) to be this x.

Clearly, φ−1 is one-to-one and onto, since φ is.

In fact, φ ◦ φ−1 is the identity map on G2, and

φ−1 ◦ φ is the identity map on G1.

We need to show the homomorphism property

for φ−1:

φ−1(ab) = φ−1(a) φ−1(b).
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Let φ(x) = a (so φ−1(a) = x) and

let φ(y) = b (so φ−1(b) = y).

Then substituting for a and b,

φ−1(ab) = φ−1(φ(x)φ(y))

= φ−1(φ(xy))

= xy

= φ−1(a) φ−1(b).

Therefore φ−1 : G2 → G1 is an isomorphism.
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Definition:

An isomorphism from a group G onto itself is

called an automorphism of G. The set of

automorphisms is denoted Aut(G).

Example 9:

Complex conjugation is an automorphism of C
under addition and C∗ under multiplication.

Example 10:

In R2, φ(a, b) = (b, a) is an automorphism of

R2 under componentwise addition.
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Correction: Previously I defined an inner au-

tomorphism to be of the form φa(x) = axa−1,

as Gallian does. To compose from left to right,

we need instead the following definition.

Definition:

Let G be a group, and let a ∈ G.

The function φa defined by

φa(x) = a−1xa,

for all x ∈ G, is called the inner automorphism

of G induced by a.

The set of inner automorphisms is denoted

Inn(G).
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Theorem 6.4: Aut(G) and Inn(G) are groups

The set of automorphisms Aut(G) of a group

G and the set of inner automorphisms Inn(G)

of a group are both groups under the operation

of function compositions.

Proof:

(Exercise 15)

Inn(G) is closed under composition:

xφaφb =
(
a−1xa

)
φb = b−1

(
a−1xa

)
b = xφab.

Inn(G) is closed under inversion:

xφaφa−1 = (a−1xa)φa−1 = x.
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Example 13:

Aut(Z/10Z) is isomorphic to U(10).

An automorphism α ∈ Aut(Z/10Z) is deter-

mined by α(1) because

α(k) = α(
k︷ ︸︸ ︷

1 + 1 · · ·+ 1) = kα(1).

Since 1 has order 10 in Z/10Z, Theorem 6.2

tells us that α(1) must also have order 10.

There are four elements of Z/10Z with order

10: 1, 3, 7, 9, hence α(1) must be one of the

four.
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Let α1, α3, α7, and α9 be maps for which

α1(1) = 1, α3(1) = 3, α7(1) = 7, and

α9(1) = 9.

These are the only possible automorphisms.

We can easily check that they are in fact au-

tomorphisms.

Consider α3. Since 3 generates Z/10Z, the

map is onto.

The map α3 is also one-to-one. If 3a = 3b,

then a = b, because 3 is invertible mod 10.

The homomorphism property holds since

α3(a+ b) = 3(a+ b) = 3a+3b = α3(a)+α3(b).
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Theorem 6.5: Aut(Z/nZ) ≈ U(n)

For every positive integer n, Aut(Z/nZ) is iso-

morphic to U(n).

The proof follows the reasoning of Example

13.
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Chapter 7:
Cosets and Lagrange’s Theorem

(page 134)

Definition:

Let G be a group and H a subset of G. For

any a ∈ G, the set

{ah : h ∈ H}

is denoted aH. Analogously,

Ha = {ha : h ∈ H}.

When H is a subgroup of G, aH is the left

coset of G containing a and Ha is the right

coset of G containing a.

We say that a is a coset representative of aH

or Ha. We write |aH| and |Ha| to denote the

number of elements in the respective sets.
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Theorem 7.1: Lagrange’s Theorem

If G is a finite group and H < G is a subgroup,

then |H| divides |G|. Moreover, the number

of distinct left (or right) cosets of H in G is

|G|/|H|.
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