MA441: Algebraic Structures I

Lecture 16

29 October 2003

Review from Lecture 15:

Theorem 6.1: Cayley's Theorem

Every group is isomorphic to a group of permutations.

Example:

 $\phi(R \cdot D1) = \phi((132)(23)) = \phi((132))\phi((23))$

 $\phi((132))\phi((23)) = (123)(456) \cdot (14)(26)(35)$

 $(123)(456) \cdot (14)(26)(35) = (16)(25)(34)$

 $(16)(25)(34) = \phi((12)) = \phi(D3).$

Theorem 6.2: Properties of Isomorphisms Acting on Elements

Suppose that $\phi: G_1 \to G_2$ is an isomorphism. Then the following properties hold.

- 1. ϕ sends the identity of G_1 to the identity of G_2 .
- 2. For every integer n and for every group element a in G_1 , $\phi(a^n) = (\phi(a))^n$.
- 3. For any elements $a, b \in G_1$, a and b commute iff $\phi(a)$ and $\phi(b)$ commute.
- 4. The order of a, |a| equals $|\phi(a)|$ for all $a \in G_1$ (isomorphisms preserve orders).

5. For a fixed integer k and a fixed group element b in G_1 , the equation $x^k = b$ has the same number of solutions in G_1 as does the equation $x^k = \phi(b)$ in G_2 .

Proof:

Part 5: Apply the isomorphism ϕ to the equation $x^k = b$ to get $\phi(x^k) = \phi(x)^k = \phi(b)$.

Let's rename the variable x to y in the second equation and write $y^k = \phi(b)$.

For every solution $x \in G_1$ to the first equation, we get a solution $y \in G_2$ to the second equation. Because ϕ is one-to-one, there are at least as many y as x.

Suppose $y \in G_2$ is a solution to $y^k = \phi(b)$. Since ϕ is onto, there is an $x \in G_1$ such that $\phi(x) = y$.

Now $y^k = \phi(x)^k = \phi(x^k) = \phi(b)$. Since ϕ is one-to-one, we know $x^k = b$.

Therefore we have at least as many x as y, and the number of solutions of the two equations are equal.

(Non)example: \mathbb{C}^* is not isomorphic to \mathbb{R}^* because the equation $x^4 = 1$ has a different number of solutions in each group.

Theorem 6.3: Properties of Isomorphisms Acting on Groups

Suppose that $\phi: G_1 \to G_2$ is an isomorphism. Then the following properties hold.

- 1. G_1 is Abelian iff G_2 is Abelian.
- 2. G_1 is cyclic iff G_2 is cyclic.
- 3. ϕ^{-1} is an isomorphism from G_2 to G_1 .
- 4. If $K \leq G_1$ is a subgroup, then $\phi(K) = \{\phi(k) | k \in K\}$ is a subgroup of G_2 .

Proof:

Part 1: follows from part 3 of Theorem 6.2, which shows that isomorphisms preserve commutativity.

Part 2: follows from part 4 of Theorem 6.2, which shows that isomorphisms preserve order and by noting that if $G_1 = \langle a \rangle$, then $G_2 = \langle \phi(a) \rangle$.

Part 3: Since ϕ is one-to-one and onto, for every $y \in G_2$, there is a unique $x \in G_1$ such that $\phi(x) = y$. Define $\phi^{-1}(y)$ to be this x.

Clearly, ϕ^{-1} is one-to-one and onto, since ϕ is.

In fact, $\phi \circ \phi^{-1}$ is the identity map on G_2 , and $\phi^{-1} \circ \phi$ is the identity map on G_1 .

We need to show the homomorphism property for ϕ^{-1} :

$$\phi^{-1}(ab) = \phi^{-1}(a) \ \phi^{-1}(b).$$

Let
$$\phi(x) = a$$
 (so $\phi^{-1}(a) = x$) and
let $\phi(y) = b$ (so $\phi^{-1}(b) = y$).

Then substituting for a and b,

$$\phi^{-1}(ab) = \phi^{-1}(\phi(x)\phi(y))$$

= $\phi^{-1}(\phi(xy))$
= xy
= $\phi^{-1}(a) \phi^{-1}(b).$

Therefore $\phi^{-1}: G_2 \to G_1$ is an isomorphism.

Definition:

An isomorphism from a group G onto itself is called an **automorphism** of G. The set of automorphisms is denoted Aut(G).

Example 9:

Complex conjugation is an automorphism of $\mathbb C$ under addition and $\mathbb C^*$ under multiplication.

Example 10:

In \mathbb{R}^2 , $\phi(a, b) = (b, a)$ is an automorphism of \mathbb{R}^2 under componentwise addition.

Correction: Previously I defined an inner automorphism to be of the form $\phi_a(x) = axa^{-1}$, as Gallian does. To compose from left to right, we need instead the following definition.

Definition:

Let G be a group, and let $a \in G$. The function ϕ_a defined by

$$\phi_a(x) = a^{-1}xa,$$

for all $x \in G$, is called the **inner automorphism** of *G* **induced by** *a*.

The set of inner automorphisms is denoted Inn(G).

Theorem 6.4: Aut(G) and Inn(G) are groups

The set of automorphisms Aut(G) of a group G and the set of inner automorphisms Inn(G) of a group are both groups under the operation of function compositions.

Proof:

(Exercise 15)

Inn(G) is closed under composition:

$$x\phi_a\phi_b = \left(a^{-1}xa\right)\phi_b = b^{-1}\left(a^{-1}xa\right)b = x\phi_{ab}.$$

Inn(G) is closed under inversion:

$$x\phi_a\phi_{a^{-1}} = (a^{-1}xa)\phi_{a^{-1}} = x.$$

Example 13:

Aut($\mathbb{Z}/10\mathbb{Z}$) is isomorphic to U(10).

An automorphism $\alpha \in Aut(\mathbb{Z}/10\mathbb{Z})$ is determined by $\alpha(1)$ because

$$\alpha(k) = \alpha(\overbrace{1+1\cdots+1}^k) = k\alpha(1).$$

Since 1 has order 10 in $\mathbb{Z}/10\mathbb{Z}$, Theorem 6.2 tells us that $\alpha(1)$ must also have order 10.

There are four elements of $\mathbb{Z}/10\mathbb{Z}$ with order 10: 1, 3, 7, 9, hence $\alpha(1)$ must be one of the four.

Let α_1 , α_3 , α_7 , and α_9 be maps for which $\alpha_1(1) = 1$, $\alpha_3(1) = 3$, $\alpha_7(1) = 7$, and $\alpha_9(1) = 9$.

These are the only possible automorphisms. We can easily check that they are in fact automorphisms.

Consider α_3 . Since 3 generates $\mathbb{Z}/10\mathbb{Z}$, the map is onto.

The map α_3 is also one-to-one. If 3a = 3b, then a = b, because 3 is invertible mod 10.

The homomorphism property holds since

 $\alpha_3(a+b) = 3(a+b) = 3a+3b = \alpha_3(a) + \alpha_3(b).$

Theorem 6.5: $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \approx U(n)$

For every positive integer n, $Aut(\mathbb{Z}/n\mathbb{Z})$ is isomorphic to U(n).

The proof follows the reasoning of Example 13.

Chapter 7: Cosets and Lagrange's Theorem

(page 134)

Definition:

Let G be a group and H a subset of G. For any $a \in G$, the set

 $\{ah : h \in H\}$

is denoted aH. Analogously,

$$Ha = \{ha : h \in H\}.$$

When H is a subgroup of G, aH is the left coset of G containing a and Ha is the right coset of G containing a.

We say that a is a coset representative of aH or Ha. We write |aH| and |Ha| to denote the number of elements in the respective sets.

Theorem 7.1: Lagrange's Theorem

If G is a finite group and H < G is a subgroup, then |H| divides |G|. Moreover, the number of distinct left (or right) cosets of H in G is |G|/|H|.