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Review from Lecture 16:

Theorem 6.2: Properties of Isomorphisms
Acting on Elements

Suppose that ¢ : G;1 — Go is an isomorphism.

(Part 5)

Then for a fixed integer k£ and a fixed group
element b in G1, the equation = = b has the
same number of solutions in G7 as does the
equation zF = ¢(b) in Go.



Theorem 6.3: Properties of Isomorphisms
Acting on Groups

Suppose that ¢ : G1 — G» is an isomorphism.
Then the following properties hold.

1. G1 is Abelian iff G» is Abelian.

2. (G1 is cyclic iff G is cyclic.

3. ¢~ 1 is an isomorphism from G5 to G1.

4. If K < (G4 is a subgroup, then
?(K) = {¢o(k)|k € K} is a subgroup of Go.



Definition:
Let G be a group, and let a € G.
The function ¢, defined by

da(x) = a_la:a,

for all x € (G, is called the inner automorphism
of G induced by a.

The set of inner automorphisms is denoted
Inn(G@).



Theorem 6.4: Aut(G) and Inn(G) are groups

The set of automorphisms Aut(G) of a group
G and the set of inner automorphisms Inn(G)
of a group are both groups under the operation
of function compositions.

Example 13:
Aut(Z/107) is isomorphic to U(10).



Theorem 6.5: Aut(Z/nZ) ~ U(n)

For every positive integer n, Aut(Z/nZ) is iso-
morphic to U(n).

Proof:
Consider the map T : Aut(Z/nZ) — U(n) that
sends o € Aut(Z/nZ) to a(1).

First we show that T does indeed map Aut(Z/nZ)
to U(n).

Recall from Example 13 that a(k) = k- (1)
by the homomorphism property.

Since a is onto, there is an m € Z/nZ such that
a(m) =1 € Z/nZ. Since a(m) =m-a(l) =1,
the multiplicative inverse of «(1) is m modulo
n. So a(l) e U(n).



Second, we show that T is one-to-one.
Suppose that «, 8 € Aut(Z/nZ).

If (1) = 3(1), then

a(k) =k-a(l) =k-8(1) = B(k),

for all k € Z/nZ, so a and @ are the same.



Third, we show that 7T is onto.

Let r € U(n) and consider the map
o L/nl — Z/nZ via s — rs (mod n).

Exercise 17 shows that « is an automorphism.

Then T(a) = «(1) = r shows that we have a
pre-image for r and that 7' is onto.



The fourth and final property to show is that T

preserves the group operation (the homomor-
phism property).

Let a, 3 be in Aut(Z/nZ). Then

T(aoB) = (a0 B)(1) = a(B(1)).
Now a(k) = ka(l) = a(1)k, SO

a(B(1)) = a(1)B8(1) = T(a)T(B).



Chapter 7.
Cosets and Lagrange’s Theorem

(page 134)

Definition:
Let G be a group and H a subset of . For
any a € GG, the set

{ah : h € H}
iIs denoted aH. Analogously,
Ha ={ha:hec H}.

When H is a subgroup of G,
aH is the left coset of G containing a and
Ha is the right coset of ¢ containing a.

We say that a is a coset representative of aH
or Ha. We write |aH| and |Ha| to denote the
number of elements in the respective sets.
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Example 1:
Let G = Sz and H = {(1),(13)}. Then the left
cosets of H in GG are

(1)H = H = (13)H

(12)H = {(12)(1),(12)(13)} = {(12),(123)} =
(123)H

(23)H = {(23)(1),(23)(13)} = {(23),(132)} =
(132)H
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Example 3:
Let H ={0,3,6} in (Z/9Z,+).

We use a + H as additive notation for cosets.
The cosets of H in Z/97Z are
O+H=H=1{0,3,6}=34+H=6+H
1+ H={1,47Y=44+H=7+H

24+ H=1{2,58=54+H=8+H
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Lemma: Properties of Cosets

Let H be a subgroup of G and a,b € G. Then

l. a€aH,

2. aH =H iffae H,

3. aH =bH or aHNbH = (),

4. aH = bH iffa~lbec H,

5. |[aH| = |bH

!

6. aH = Ha iff H = aHa !,

7. aH <G iffae H.

13



Proof:
Part 1. a = ae € aH.

Part 2: Assume aH = H. Since a = ae € aH,
then ¢ € H. Conversely, assume a € H. Then
aH C H because H is closed under addition.
Now H C aH because for any h € H, we know
o lh € H, so

h=eh = (aa " 1)h =a(a"1h) € aH.

Part 3: Suppose x € aH NbH. We wish to
show aH = bH. Let x = ah1 = bhyo. Then a =
bhohit and b= ah1h;1. Now any ah € aH can
be rewritten as b(thflh) € bH. Conversely,
any bh € bH can be rewritten as a(hlhglh) €
aH.
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Part 4: aH = bH iff H = a—1bH. Apply prop-
erty 2.

Part 5: The map that sends ah — bh is clearly
onto. It is one-to-one because of cancellation.
If ahqy = aho, then h1 = ho. This shows the
sets have the same size.

We’'ll delay the proof of 6 and 7.

Note that properties 1, 3, and 5 show that the
left cosets of a subgroup H < G partition G
into blocks of equal size.
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Theorem 7.1: Lagrange’s Theorem

If G is a finite group and H < GG is a subgroup,
then |H| divides |G|. Moreover, the number
of distinct left (or right) cosets of H in G is
Gl/|H].

Proof:
Let a1 H,aoH,...,arH denote a complete set of
distinct left cosets of H in G.

Since the cosets partition G, we have
G=a1HUa>HU---UarH,
and then
G| = la1H| + |a2H| + -+ - + |arH|.

Since all cosets have the same size, |G| = r|H|.
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Homework Assignment 9

Reading Assignment:

Chapter 7: 134—144

Homework Problems:

Chapter 6: 12, 14, 15, 17, 19, 20, 23, 24, 29,
32

Chapter 7: 1, 2, 3, 7
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