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Review from Lecture 18:

We proved several properties of cosets of

H < G from the Lemma, including

• Every element is contained in a coset,

• Two cosets are either disjoint or identical,

• Two cosets with representatives a and b

are the same iff a−1b ∈ H (or b−1a ∈ H),

• Any two cosets have the same size,

• The only coset of H that is actually a sub-

group of G is H itself.
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We learned that the cosets of H partition G.

This fact is the basis for one of the most im-

portant theorems in the theory of finite groups,

Lagrange’s Theorem.

Theorem 7.1: Lagrange’s Theorem

If G is a finite group and H < G is a subgroup,

then |H| divides |G|. Moreover, the number

of distinct left (or right) cosets of H in G is

|G|/|H|.

Definition:

The index of a subgroup H in G is the number

of distinct left cosets of H in G and is denoted

|G : H| (or [G : H]).
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We consider some implications of Lagrange’s

Theorem.

Corollary 1:

If G is a finite group and H < G, then

|G : H| = |G|/|H|.

In the notation of the theorem,

|G| = |a1H|+ |a2H|+ · · ·+ |arH|.

Since all cosets have the same size, |G| = r|H|.

Therefore,

r = |G : H| = |G|/|H|.

4



Corollary 2:

In a finite group, the order of each element

divides the order of the group.

For every a ∈ G, 〈a〉 < G. Therefore |a| = |〈a〉|
divides |G|.
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Corollary 3:

A group of prime order is cyclic.

Proof:

Suppose a ∈ G, a 6= e. Then |a| divides |G|.

Since |G| is prime, its only divisors are 1 and

|G|. But |a| 6= 1 since a is not the identity. So

|a| = |G| and 〈a〉 = G.
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Corollary 4:

Let G be a finite group, and let a ∈ G.

Then a|G| = e.

Proof:

By Corollary 2, |a| divides |G|, say |G| = |a| · k.

Then a|G| = a|a|·k = ek = e.
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Corollary 5 is really a corollary of Corollary 4,

with G = U(p), for p prime.

Corollary 5: Fermat’s Little Theorem

For every integer a and every prime p,

ap ≡ a (mod p).

Proof:

Consider U(p). Let a ≡ r (mod p),

where 0 ≤ r < p.

The order of U(p) is p − 1. So by Corollary 4,

ap−1 = rp−1 = e in U(p).

Multiply by a to get ap ≡ a (mod p).
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Example/Application:

Is n = 2257 − 1 prime?

2n−1 ≡ 1 (mod n).

Does this mean n is prime?

10n−1 ≡ 4122...5616︸ ︷︷ ︸
77 digits

(mod n).

If n were prime, then this would have to be 1.

So n is composite.
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Consider the following two statements:

1) G has a subgroup H of order d.

and

2) d divides n.

Lagrange’s Theorem says 1) implies 2).

However, the converse is not necessarily true.

The converse is true for cyclic groups.
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Theorem 7.2: Classification of Groups of

Order 2p

Let G be a group of order 2p, where p is a

prime greater than 2. Then G is isomorphic to

either Z/2pZ or Dp.

Proof:

If G has an element of order 2p, then G must

be cyclic of order 2p.

Let us assume that G does not have an element

of order 2p. We will show G ≈ Dp.

By Lagrange’s Theorem, the order of every

element divides the order of G, so any non-

identity element has order either 2 or p.
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We will show there is an element of order p.

By way of contradiction, assume all non-identity

elements have order 2.

This allows us to show that there is a subgroup

of order 4, which does not divide the order of

G, and gives a contradiction.
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Let a be an element of order p.

Consider the cosets of 〈a〉 < G.

Choose b 6∈ 〈a〉.

Then G is the disjoint union of 〈a〉 and b〈a〉.

(Are there any other cosets?)
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Claim: |b| = 2.

Consider b2〈a〉.

This must be either 〈a〉 or b〈a〉.

It can’t be b〈a〉, so b2〈a〉 = 〈a〉.

Thus b2 ∈ 〈a〉.

What does Lagrange’s Theorem say about the

order of b2?
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The order of b2 must be either 1 or p.

The order of b2 can not be p, because then

|b| = 2p.

Thus any element not in 〈a〉 has order 2.

Compare this to the dihedral group, where a is

the rotation R.

What are the elements not in 〈R〉?
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Consider ab. Can ab be in 〈a〉?

The order of ab is 2.

ab = (ab)−1 = b−1a−1 = ba−1.

In the geometric representation, this would be

RF = FR−1.

This relation is enough to determine the group

structure, because with |a| = p, |b| = 2, and

ab = ba−1, we can complete the multiplication

table for the group.

(See Gallian, page 140, for further discussion.)
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Definition: Stabilizer of a Point

Let G be a group of permutations of a set S.

For each i in S, let

StabG(i) = {φ ∈ G : φ(i) = i},

(or alternatively,

StabG(i) = {a ∈ G : ia = i},

where ia = i · a denotes the action of a on i on

the right.)

We call StabG(i) the stabilizer of i in G.

We have alrady verified that the stabilizer of a

point is a subgroup (Exercise 5.31).

17



Definition: The Orbit of a Point

Let G be a group of permutations of a set S.

For each i ∈ S, let

OrbG(s) = {φ(s) : φ ∈ G},

(or alternatively,

OrbG(s) = {sa : a ∈ G},

where sa = s · a denotes the action of a on s

on the right.)

The set OrbG(s) is a subset of S called the

orbit of s under G.

We write |OrbG(s)| for the number of elements

in OrbG(s).
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Theorem 7.3: Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a

set S. Then for any i in S,

|G| = |StabG(i)| · |OrbG(i)|.
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Homework Assignment 10

Reading Assignment:

Chapter 7

Chapter 8: pages 150–153

Homework Problems:

Chapter 6: 35, 36, 40

Chapter 7: 4, 7, 8, 10, 15, 16, 17, 22

Chapter 8: 1
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