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Review from Lecture 19:

We proved five corollaries of Lagrange’'s T he-
orem.

Corollary 1:
If G is a finite group and H < G, then
|G H| = |G|/|H].

Corollary 2:
In a finite group, the order of each element

divides the order of the group.



Corollary 3:
A group of prime order is cyclic.
Corollary 4:

Let G be a finite group, and let a € G.
Then alCGl = e.

Corollary 5: Fermat'’s Little Theorem

For every integer a and every prime p,
a? =a (mod p).



Theorem 7.2: Classification of Groups of
Order 2p

Let G be a group of order 2p, where p is a
prime greater than 2. Then G is isomorphic to
either Z/2pZ or Dy.



The proof relied on considering

e whether there was an element of order 2p
or not,

e whether all (non-identity) elements had or-
der 2 or whether there was an element a
of order p,

e analyzing the cosets of the cyclic subgroup
of order p and finding an element b of order
2, and

e proving the relation ab = b la.



Definition: Stabilizer of a Point

Let G be a group of permutations of a set S.
For each 7 in S, let

Stabg (i) = {¢ € G : ¢(i) = i},
(or alternatively,
Stabg(i) = {a € G : ia = i},

where 1a = 7 -a denotes the action of a on 7z on
the right.)

We call Stabg (i) the stabilizer of : in G.

We have alrady verified that the stabilizer of a
point is a subgroup (Exercise 5.31).



Definition: The Orbit of a Point

Let G be a group of permutations of a set S.
For each 7 € S, let

Orbg(s) = {#(s) : ¢ € G},
(or alternatively,
Orba(s) = {sa : a € G},

where sa = s - a denotes the action of a on s
on the right.)

The set Orbg(s) is a subset of S called the
orbit of s under G.

We write | Orbgn(s)| for the number of elements
in Ol’bg(s).



Theorem 7.3: Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a
set S. Then for any 7z in S,

|G| = | Stabg(4)] - | Orbg(2)].

The idea of the proof is to show that

|G : Stabg(i)| = |G|/| Stabg(é)| equals | Orbg(4)|
by showing there is a bijection between the left
cosets of Stabg(i) < G and Orbg (7).



Let H = Stabg(4).

For any ¢ € G, let T' be the correspondence
that sends cosets of H to the orbit Orbg(4)
via oH — ¢(2).

First, we show that T is well-defined, that is,
the image of a coset under T does not depend
on which representative we choose.

Suppose «H = BH. Then a 138 € H. So
a~13(i) =i and thus a(i) = B8(3).



Second, we show that T is one-to-one. If
a(i) = B(i), then by reversing the steps, we
see aH = (BH.

Third, we show that T is onto. If j € Orbg(4),

then there is some ¢ such that j = «(7). Then
aH — 5 under T

Since T is a bijection, |G : H| = |Orbg(i)|,
which proves the theorem.

10



Chapter 8:
External Direct Products

(page 150)

Definition:
Let G1,Go,...,Gy be a finite collection of groups.
T he external direct product of these groups,
written as

GL DG DG,

IS the set of all n-tuples for which the :-th
component is an element of G; and the group
operation on the set of n-tuples is the com-
ponentwise operation, where -th components
are composed in the group G;.
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In symbols,

Gi1® - ®&Gn=A{(91,---,9n) : 9 € G;}

where the composition law is

(91,---,9n) - (g4, a0) = (9141, - - gngl)-

The composition gigg is formed according to
the group operation of G;.

Let e; denote the identity element of G;.

The identity of G1 & --- ® Gy is (eq1,...,en),
which we shorten to (e,...,e).

The inverse of (g1,...,9n) is (g7, 97 1).
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T heorem:

The external direct product G1 & --- P Gy, IS a
group.

Proof:
(Exercise 8.1)
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Example:

T he two-dimensional vector space over the re-
als, R2, taken as an additive group, is the ex-
ternal direct product of two copies of R. We
write

R?2 =R & R.

The group operation is componentwise addi-
tion.

Example 1: U(8) @ U(10)

U(8)eU(10) = {(1,1),(1,3),(1,7),(1,9),(3,1),...
o (7,7),(7,9)}

(3,7)(7,9) = (5,3)
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Theorem 8.1: Order of an element in a
Direct Product

The order of an element in a direct product
of a finite number of finite groups is the least
common multiple (LCM) of the orders of the
components of the element. In symbols,

(91,92, -- > 9n)| = lecm(lg1l, g2l - - -, lgn]) }-
Compare this to the result by Ruffini (Theorem
5.3) that the order of a permutation written in

disjoint cycle notation is the LCM of the cycle
lengths.
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Proof:
We treat only the case n = 2. The general
case can be done by induction. (Exercise 8.2)

Let (g1,9>) be an arbitrary element of G1 D Go.

Let

s = lcm(lg1l, |g92])

and

t =1(g91,92)|

We will show that s and t divide each other.
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We know that t divides s, because

(91792)8 — (gi7g§) — (6, 6).

Conversely,

(91,92)" = (e,€) = (44, 5),

SO |g1| and |go| divide t, meaning s divides t.

Therefore s = t.
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