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Review from Lecture 23:

Theorem 9.3:
Let G be a group with center Z(G). If G/Z(G)
is cyclic, then G is Abelian.

Theorem 9.4:
For any group G, G/Z(G) =~ Inn(G).

Theorem 9.5: Cauchy’s Theorem (Abelian)
Let G be a finite Abelian group and let p be a
prime that divides the order of G. Then G has
an element of order p.



Internal Direct Products

Notation: for subgroups H, K < G,
HK = {hklh € Hk € K}.

Definition:

We say that &G is the internal direct product
of H and K and write G = H x K

if H K <G and

G=HK and HN K = {e}.



Definition:

Let H1, Ho,..., H, be a finite collection of nor-
mal subgroups of G. We say that G is the
internal direct product of H1, Ho,..., H, and
write

G =H{ x Hyx---x Hp
if the following two conditions hold:

1. G= H1Hy---Hp = {h1hy---hp|h; € H;},

2. (H1Hs---H)NH; 1 ={e} (i=1,...,n—1).



Note:
For the internal direct product H x K, both H

and K must be normal subgroups of the same
group. For the external direct product, H and
K can be any groups.

Theorem 9.6
If a group G is the internal direct product of

a finite number of subgroups Hi,H»o,..., Hp,
then G is isomorphic to the external direct

product of Hq, H»>,..., Hy.

(We skip the proof.)



Chapter 10: Group Homomorphisms
(page 194)

Definition:

A homomorphism ¢ from a group Gq1 to a
group G» is a mapping from G71 to Go that
preserves the group operation; that is, for all
a,be G,

¢(ab) = ¢(a)p(b).

The term homomorphism comes from the Greek
words “homo” (like) and “morphe” (form).



There is no requirement for a homomorphism
to be one-to-one or onto.

Note: A monomorphism is a one-to-one ho-
momorphism. An epimorphism is an onto ho-
momorphism. And of course, an isomorphism
iIs @ homomorphism that is both one-to-one
and onto.

An endomorphism of a group is a homomor-
phism from a group to itself. An automor-
phism is an endomorphism that is also an iso-
morphism.



Definition:
The kernel of a homomorphism ¢ : G1 — G»
is the set {x € G|¢(x) = e}.

We denote the kernel of ¢ by Ker ¢.

Example 1:
The kernel of an isomorphism is the trivial
group {e}.

Example 2:
Let R* be the group of nonzero real num-
bers under multiplication. The determinant

mapping A — det A is a homomorphism from
GL(2,R) to R*.



The kernel of the determinant mapping is the
special linear group SL(2,R), consisting of de-
terminant 1 matrices.

Example 4:

Let R[xz] denote the group of all polynomials
with real coefficients under addition. For any
f € R[z], let f' denote the derivative of f.
Then the derivative map f — f’ is an endo-
morphism of R[x] whose kernel is the set of all
constant polynomials.

Example 5:
The mapping ¢ from Z to Z/nZ defined by
o(m) = r, where r is the remainder of m di-
vided by n. That is, ¢(m) = (m mod n). The
kernel is (n).



Theorem 10.1
Let ¢ : G1 — G> be a homomorphism. Let g
be in G. Then

1. ¢ sends the identity of G1 to the identity
of Go.

2. ¢(g") = ¢(g)" (Vn € Z)

3. If |g| is finite, then |¢(g)| divides |g]|.

4. Kero < G.

5. If qb(gl) = go, then
¢~ 1(g2) = {z € G1|¢(z) = g2} = g1 - Ker 6.
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Proof:
Parts 1 and 2 are the same as we proved before
for isomorphisms.

Part 3: |¢(g)| divides |g|.
Let n = |g|. Then ¢(g)" = ¢(g") = e.
Part 4. Kero¢ < G.

We know the kernel is not empty since it con-
tains the identity.

Two-step subgroup test:

For any a,b € Ker ¢, we have ¢(ab) = ¢(a)dp(b) =
ee = e, SO ab € Ker ¢.

For inverses, we have e = ¢(aa™1) = ¢(a)p(a=1) =
ep(a™1), so p(a™1) =e and a1 € Ker¢.
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Part 5: If ¢(gl) = go, then
¢ 1(g2) = {z € G1|¢(x) = g2} = g1 - Ker ¢.

We will show containment in both directions.
First, ¢~ 1(g2) C g1 - Ker ¢.

Let z € 97 1(g2), S0 (z) = go = ¢(g1). ¢(g7 'z) =
92_192 = e. Then gl_laz € Ker ¢, so x € g1 Ker ¢.

Second, g1 - Ker¢ C ¢~ 1(g0).
Let x € g1 - Kero¢, that is, ¢ = g1k, for some

k€ Kerg. Then ¢(x) = ¢(g1k) = ¢(g91)¢(k) =
go-e=gn, SO x € ¢~ 1(g2).
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Theorem 10.2:
Let ¢ : G1 — G5 be a homomorphism and let
H < G1. We have the following properties:

1. ¢(H) = {¢p(h)|h € H} is a subgroup of G»5.

2. If H is cyclic, then ¢(H) is cyclic.

3. If H is Abelian, then ¢(H) is Abelian.

4. If H <1 G, then ¢(H) < ¢(G1).
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. If | Ker¢| = n, then ¢ is an n-to-one map-
ping from G71 onto ¢(G1).

. If |H| = n, then |¢p(H)| divides n.

. If K < Gy, then ¢~ 1(K) < Gj.

. If K <G5, then ¢~ 1(K) < Gy.

. If ¢ is onto and Ker¢ = {e}, then ¢ is an
Isomorphism.
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Proof:

Parts 1, 2, 3 are similar to what we have proved
before for isomorphisms.

Part 4: If H <G, then ¢(H) < ¢(G1).
We know zHz~ 1 C H (Vz € G1).

Any element g in ¢(G1) has a preimage =,

¢(z) =g.

Choose any ¢(h) € ¢(H). ¢(x)p(h)p(z)~t =
p(zhz~1) = ¢(h') € ¢(H).

So ¢(H) < ¢(G1).
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(We'll skip parts 5, 6.)
Part 7: If K < Go, then ¢~ 1(K) < G;.
Clearly the identity is in ¢~ 1(K).

Closure: for any a,b € ¢~ 1(K), ¢(ab) = ¢p(a)p(b) €
K, so ab € ¢~ 1(K).

Inverses: ¢(a=1) = ¢(a)~ ! € K.
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Part 8: If K <Gy, then ¢~ 1(K) < G1.

Choose any a € ¢~ 1(K). For any z € Gy,
H(zax™1) = d()p(a)p(z)~1 € K since K <Gy,
so zaz~ ! € ¢~ 1(K).

(We'll skip part 9.)

Corollary: Ker¢ <1 G1.

Proof:
Apply part 8 with K = {e} < G>.
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Theorem 10.3:
The First Isomorphism Theorem
(Jordan, 1870)

Let ¢ : G1 — Go be a homomorphism. Then
the mapping

G1/(Ker¢) — ¢(Gy)
given by

g1 Ker¢ — ¢(g1)

IS an isomorphism, that is,

G1/(Ker¢) =~ ¢(G1).
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