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Review from Lecture 24:
Internal Direct Products

Notation: for subgroups H, K < G,
HK = {hk|lh € H,k € K}.

Definition:

We say that G is the internal direct product
of H and K and write G = H X K

if H K <G and

G=HK and HN K = {e}.



Definition:

Let H1, Ho,..., H, be a finite collection of nor-
mal subgroups of G. We say that G is the
internal direct product of H1, Ho,..., H, and
write

G =H{ x Hyx---x Hp
if the following two conditions hold:

1. G= H1Hy---Hp = {h1hy---hp|h; € H;},

2. (H1Hs---H)NH; 1 ={e} (i=1,...,n—1).



Theorem 9.6

If a group G is the internal direct product of
a finite number of subgroups Hqy, Ho,..., Hy,
then G is isomorphic to the external direct
product of Hq,H»,..., Hy.



Example: (p. 185) Let m = nyiny---ng, where
the n; are relatively prime to each other. Pre-
viously we saw that

U(m) = U(n1) @U(n2) & --- & U(ng).

T his external direct product is also an internal
direct product:

Um)~U, ., (m)xU

mno (M) X XUy 1y ().

/n1

For example,

U(105)

Q

U(7) @ U(15)
U15(105) x U7(105)
{1,16,31,46,61,76} x
{1,8,22,29,43,64,71,92}



Definition:

A homomorphism ¢ from a group G71 to a
group G» is a mapping from G71 to G, that
preserves the group operation; that is, for all

a,be G,
¢(ab) = ¢(a)p(b).



Definition:
The kernel of a homomorphism ¢ : G1 — G»
is the set {x € G|¢(x) = e}.

We denote the kernel of ¢ by Ker ¢.

Examples:

The kernel of the determinant map from GL(2,R)
to R* is the subgroup of matrices with determi-
nant 1 is SL(2,R). (This is called the special
linear group).

The kernel of the derivative map on polynomi-
als is the subgroup of constant polynomials.



Theorem 10.1
Let ¢ : G1 — Go be a homomorphism.
Let g be in G1. Then

1. ¢ sends the identity of G1 to the identity
of Go.
A homomorphism preserves identity.

2. ¢(g") = 9(g)" (Vn € Z)
A homomorphism preserves powers.



3. If |g| is finite, then |¢(g)| divides |g|.
T he homomorphic image of an element
has an order that divides the order of
that element.

4. Kero¢ < G.
The kernel of a homomorphism iIs a
subgroup.

5. If ¢(g1) = go, then
¢~ 1(g2) = {z € G1|¢(z) = g2} = g1 - Ker ¢.
The homomorphic preimage of an ele-
ment is a coset of the kernel.



Theorem 10.2:
Let ¢ : G1 — G5 be a homomorphism and let
H < G1. We have the following properties:

1. ¢(H) = {¢p(h)|h € H} is a subgroup of G»5.
T he homomorphic image of a subgroup
IS a subgroup, or
A homomorphism preserves the prop-
erty of being a subgroup.

2. If H is cyclic, then ¢(H) is cyclic.
The homomorphic image of a cyclic
group is cyclic, or
A homomorphism preserves the prop-
erty of being cyclic.
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3. If H is Abelian, then ¢(H) is Abelian. The
homomorphic image of an Abelian group
iIs Abelian, or
A homomorphism preserves the prop-
erty of being Abelian.

4. If H <1 Gq, then ¢(H) < ¢(Gq).
The homomorphic image of a normal
subgroup of a group is normal in the
image of that group.
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5. If | Ker ¢| = n, then ¢ is an n-to-one map-
ping from G71 onto ¢(G1).
Every element in the homomorphic im-
age of a group has the same number
of preimages as the identity.

6. If |[H| = n, then |¢p(H)| divides n.
T he homomorphic image of a subgroup
has an order that divides the order of
that subgroup.

7. If K < Go, then ¢ 1(K) < G1.
The inverse image of a subgroup is a
subgroup.
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8. If K < Go, then ¢~ 1(K) <« G1.
The inverse image of a normal sub-
group is normal.

9. If ¢ is onto and Ker¢ = {e}, then ¢ is an
iIsomorphism.
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Let's review the proof of part 8:
If K <1Gop, then ¢~ 1K) < Gj.

Choose any a € ¢~ 1(K). For any z € Gy,
H(zax™1) = d(2)p(a)p(z)~1 € K since K <Gy,
so zax~ 1 € o7 1(K).

We specialized this part to get an important
corollary.

Corollary: Ker¢ <1 G1.
A kernel is a normal subgroup.

Proof:
Apply part 8 with K = {e} < G»>.
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Theorem 10.3:
The First Isomorphism Theorem
(Jordan, 1870)

Let ¢ : G1 — Go be a homomorphism. Then
the mapping

G1/(Ker¢) — ¢(Gy)
given by

g1 Ker¢ — ¢(g1)

IS an isomorphism, that is,

G1/(Ker¢) =~ ¢(G1).
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Proof:
Let ¢ denote the correspondence

g1 Ker¢ — ¢(g1)-

We need to prove that this correspondence is
a well-defined function, that it is one-to-one,
IS onto, and preserves the group operation.

Suppose xKer¢p = yKer¢. We want to show
their images are the same, thatis, ¢(x) = ¢(y).

From z Ker ¢ = yKer ¢, we have y— 1z € Ker ¢.

So ¢(y~'z) = e = ¢(y Do) = ¢(y)~'o(x),
which implies ¢(y) = ¢(x).
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Next, we show ) is one-to-one.

Suppose ¢(x) = ¢(y). We will show x and y
represent the same coset of the kernel.

From ¢(z) = ¢(y), we have (¢(y)) 1o(z) =e.

This implies ¢(y~Do(z) = ¢(y~1z) = e, so
y~lr € Ker ¢, therefore x Ker ¢ = y Ker ¢.
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It's clear that ¢ is onto, because any element
of the image ¢(G1) equals ¢(x) (3= € G1) and
v maps z Kerg¢ to o(x).

Finally, we show v preserves the group opera-
tion.

Y(x Kerg-yKerg) =Y ((zy) Kerp) = ¢(xy).

We also have

Y(zKerg - yKerg) = y(zKerg)(yKerg) =
o(x)d(y), which equals ¢(xy).

18



Example 13:

Consider the map from Z to Z, that reduces
the integers modulo n. The kernel of the map
is (n), and we have

7./ (n) ~ Zn.

Example 14:

Consider the map from R under addition to the
unit circle in C under multiplication (the circle
group) via x — exp(ix) = cos(x) + 7 -sin(x).

The kernel of this map is (27), and we have
that R/(2x) is isomorphic to the circle group.
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Theorem 10.4:

Normal Subgroups are Kernels

Every normal subgroup of a group G is the
kernel of a homomorphism of . In particular,
a normal subgroup N < G is the kernel of the
mapping g — gN from G to the quotient group
G/N.

Proof:
Let v: G — G/N be the map vy(g) = gN.

We call this map the natural (or canonical)
homomorphism.

If we can show that this map is in fact a ho-
momorphism and that NV is its kernel, then we
are done.
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The map ~ preserves the group operation:
v(zy) = (zy)N = zN - yN = y(z) - v(y).

The kernel of v is exactly N because
~y(x) =xN = N iff z € N.

From the corollary above, we know that a ker-
nel is a normal subgroup.
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Let's define a few more basic concepts. (See
pages 89 and 395 and Example 15 on page
203.)

Definition:

Two elements a,b in a group G are conjugate
in G if for some x € G, b=xaz~!. We say b is
a conjugate of a (and vice-versa).

The conjugacy class of a, denoted cl(a) is the
set of all conjugates of a, that is,

cl(a) = {zaz~ |z € G}.

Conjugacy is an equivalence relation, and the
conjugacy classes partition a group.
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Definition:
The normalizer of H < G is denoted N(H)
and defined as

N(H) = {z € G|lzHz~ ! = H}.

Even if H is not normal in G, H <1 N(H), and
the normalizer is the largest subgroup of G that
contains H as a normal subgroup.

Definition:
The centralizer of H < G is denoted C(H)
and defined as

C(H) = {z € Glzha~! = h,Vh € H}.

The centralizer of H is the subgroup consisting
of all elements that commute with elements of
H.
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Reading Assignment:
Chapter 10
Chapter 11: pages 211—213

Chapter 24: pages 395—400
(Read up through Cauchy’s theorem and skip
the proofs.)
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