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(page 179)

Example 13: A4 has no subgroup of order 6.

BWOC, suppose H < A4 has order 6. Then

H C A4, since it has index 2.

Thus A4/H has order 2. For all α ∈ A4, (αH)2 =

(α2)H = H, so α2 ∈ H.

However, there are nine distinct elements in A4

of the form g2. They can’t all be in a subgroup

of order 6, so we have a contradiction. (See

the group table, p. 104.)
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Alternatively, (page 139, Example 4):

let α be a 3-cycle, of which there are eight in

A4. Then H, αH, α2H can’t all be distinct. Any

two of the three being equal implies α ∈ H.

Therefore there would have to be eight 3-cycles

in H of order 6.

This is a nice counterexample to the converse

of Lagrange’s theorem.
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Review from Lecture 25:

Theorem 10.3:

The First Isomorphism Theorem

(Jordan, 1870)

Let φ : G1 → G2 be a homomorphism. Then

the mapping

G1/(Ker φ) → φ(G1)

given by

g1 Ker φ 7→ φ(g1)

is an isomorphism, that is,

G1/(Ker φ) ≈ φ(G1).
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Theorem 10.4:

Normal Subgroups are Kernels

Every normal subgroup of a group G is the

kernel of a homomorphism of G. In particular,

a normal subgroup N C G is the kernel of the

mapping g 7→ gN from G to the quotient group

G/N .
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Definition:

Two elements a, b in a group G are conjugate

in G if for some x ∈ G, b = xax−1. We say b is

a conjugate of a (and vice-versa).

The conjugacy class of a, denoted cl(a) is the

set of all conjugates of a, that is,

cl(a) = {xax−1|x ∈ G}.

Conjugacy is an equivalence relation, and the

conjugacy classes partition a group.
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Definition:

The normalizer of H < G is denoted N(H)

and defined as

N(H) = {x ∈ G|xHx−1 = H}.

Even if H is not normal in G, H C N(H), and

the normalizer is the largest subgroup of G that

contains H as a normal subgroup.

Definition:

The centralizer of H < G is denoted C(H)

and defined as

C(H) = {x ∈ G|xhx−1 = h, ∀h ∈ H}.

The centralizer of H is the subgroup consisting

of all elements that commute with elements of

H.
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Theorem 9.5: Cauchy’s Theorem (Abelian)

Let G be a finite Abelian group and let p be a

prime that divides the order of G. Then G has

an element of order p.

We’ll prove Cauchy’s Theorem for any finite

group.
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(page 396)

Theorem 24.1: The Number of Conju-

gates of a

Let G be a finite group and let a be an element

of G. Then

| cl(a)| = |G : C(a)|.

Proof:

Let T be the map that sends the coset xC(a)

to the conjugate xax−1 of a.

We will show that T is a bijection, which will

show the number of conjugates of a is the same

as the number of cosets of C(a).
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Well-defined: Suppose xC(a) = yC(a). We

want to show that the image under T does

not depend on what representative we choose.

That is, we want xax−1 = yay−1.

Since xC(a) = yC(a), that means x−1y ∈ C(a),

or (x−1y)a = a(x−1y).

Right multiply by y−1 to get x−1yay−1 = ax−1.

Left multiply by x to get yay−1 = xax−1.

One-to-one: reverse the argument

Onto: any conjugate of a has the form xax−1,

and thus has the preimage xC(a) under T .
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Note that conjugacy is an equivalence relation.

This means that we can partition a group into

conjugacy classes.

Reflexive: a is conjugate to itself.

Symmetric: If a = xbx−1, then b = x−1a(x−1)−1.

So if a is conjugate to b, then b is conjugate

to a.

Transitive: If a = xbx−1 and b = ycy−1, then

a = (xy)c(xy)−1. So if a is conjugate to b and

b is conjugate to c, then a is conjugate to c.
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Corollary: The Class Equation

For any finite group G,

|G| =
∑

|G : C(a)|,

where the sum runs over one representative

element a from each conjugacy class of G.
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If a ∈ Z(G), then C(a) = G, and |G : C(a)| = 1.

That is, the conjugacy class of an element in

the center of G is just that element.

We can rewrite the class equation as

|G| = |Z(G)|+
∑

|G : C(a)|,

where the sum runs over one representative

element a from each conjugacy class of G that

has more than one element, i.e., a 6∈ Z(G).
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Cauchy’s Theorem

Let G be a finite group and p a prime that

divides the order of G. Then G has an element

of order p.

Proof:

We prove this by induction on the order of G.

The statement is trivially true for |G| = 1,2.

Assume the statement is true for groups of

order less than |G|.

Suppose G has a proper subgroup H < G whose

order is divisible by p. Then by the induction

hypothesis, H would have an element of order

p, and we would be done. Therefore, we can

assume that no proper subgroup of G has order

divisible by p.
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Consider the class equation for G:

|G| = |Z(G)|+
∑

|G : C(a)|.

where the sum runs over a representative a of

each conjugacy class of G for a 6∈ Z(G).

Since C(a) < G, we can assume p does not

divide |C(a)|.

We know

|G| = |C(a)| · |G : C(a)|.

Since p divides |G| and p does not divide |C(a)|,
then p divides |G : C(a)| for all a 6∈ Z(G).
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Now in the class equation

|G| = |Z(G)|+
∑

|G : C(a)|,

we have that p divides |G| and all terms of the

sum. Therefore p divides |Z(G)|.

Since Z(G) is an abelian group, we can apply

Cauchy’s Theorem in the abelian case to get

an element of order p.
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Cauchy’s Theorem is a special case of a larger

result.

Theorem 24.3:

Sylow’s First Theorem (1872) on the

Existence of Subgroups of Prime-Power

Order

Let G be a finite group and let p be a prime. If

pk divides |G|, then G has at least one subgroup

of order pk.

(We skip the proof. You can read it on page

399.)
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(page 211)

Theorem 11.1: The Fundamental Theo-

rem of Finite Abelian Groups

Every finite Abelian group is a direct product

of cyclic groups of prime-power order. More-

over, the number of terms in the product and

the orders of the cyclic groups are uniquely de-

termined by the group.

(We skip the proof.)

With this theorem, we can classify all finite

abelian groups of order n up to isomorphism.

Let G be abelian of order n.
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Then G determines primes {pi} (not necessarily

distinct) and powers {ni} such that n factors

as p
n1
1 · pn2

2 · · · pnk
k and such that

G ≈ Z
p
n1
1
⊕ Z

p
n2
2
⊕ · · · ⊕ Z

p
nk
k

.

(Order of terms does not matter up to isomor-

phism.)

We can list all possible isomorphism classes for

abelian groups of order n. First write down a

unique factorization for n:

n = p
n1
1 · pn2

2 · · · pnk
k

(pi distinct).
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For each term pn in the factorization, consider

all possible ways to write n as a sum of inte-

gers n = m1 + · · ·+ ms. (These are called the

partitions of n.)

Then the possible groups corresponding to pn

are

Zpm1 ⊕ Zpm2 ⊕ · · · ⊕ Zpms.
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Example:

Suppose n = p3. Then the possible finite

abelian groups of order n are Zp3, Zp2 ⊕ Zp,

and Zp ⊕ Zp ⊕ Zp.

Example:

Suppose n = p2q2 (p, q distinct). Then the

possible finite abelian groups of order n are

Zp2 ⊕ Zq2, Zp ⊕ Zp ⊕ Zq2, Zp2 ⊕ Zq ⊕ Zq,

Zp ⊕ Zp ⊕ Zq ⊕ Zq.
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Overview

Congratulations!

You have all made huge progress

in abstract reasoning and writing!

Symmetry

dihedral groups

Analysis/Synthesis

subgroups, normal subgroups

quotient group or factor group

Knowing about H C G, G/H tells you about G.

Center, Centralizer

external and internal direct products
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Classification

Cyclic groups:

Fundamental Theorem of Cyclic Groups, clas-

sification of all possible orders of elements and

how many there are

Order 2p: cyclic or dihedral

Maps that Preserve Structure

homomorphism, kernels

isomorphism, automorphism

Dihedral group of the square as geometric group,

permutation group, matrix group

How to show groups are isomorphic and not

isomorphic

Representation of a Group

permutations, matrices

Orbit-Stabilizer Theorem
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Big Theorems:

Lagrange’s Theorem:

H < G implies |H| divides |G|.

The First Isomorphism Theorem:

G/(Ker φ) ≈ φ(G).

Sylow’s Theorem:

pk||G| implies G has a subgroup of order pk.

Cauchy’s Theorem:

p||G| implies G has an element of order p.

Fundamental Theorem of Finite Abelian Groups
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Evaluations

Mixing use of screen and board?

Pace of slides?

Covering homework in class (not enough? too

much?)

Could you get enough help from me? (home-

work hints, accessible outside class)

Exam preparations

Discussion Board

Suggestions for improvement?
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