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The Pigeonhole Principle:

Let n be a positive integer.

If you place n + 1 balls in n bins, then some
bin must have more than one ball.



(From Chapter 0, page 14)

Mathematical Induction

Theorem 0.4:

First Principle of Mathematical Induction
Let S be a set of integers containing a.
Suppose that S has the property that whenever
some integer n > a belongs to S, then the
integer n 4+ 1 belongs to S. (n € S implies

(n+1)esS, forn>a.)

Then S contains every integer greater than or
equal to a.



In particular, to prove that a property P(n)
holds for every positive integer n, you can use
induction:

Step 1 (base case):
Show that P(1) holds.

Step 2 (induction hypothesis):
Assume that P(n) holds.

Step 3 (induction step):
Prove that P(n 4+ 1) holds.

There is also a second principle of induction
called ‘“strong” induction. (Step 2: P(k) holds
for all k <mn.)



Lemma: Let G be an Abelian group. Then
for any a,b € G, (ab)” = a"™b"™ (n > 1).

Case n = 1: (ab)! = ab. (Base case)
Assume (ab)™ = a™b"™. (Induction hypothesis)
Prove (ab)"T1 = gnt+ipn+1,

(ab)"T1 = (ab)" - ab.

Use the induction hypothesis:

(ab)™ - ab = a™b"ab,

and since G is Abelian,

a"b"ab = a"a - b"b = g™ T1pnTt1,



Review from Lecture 3:

We defined

e the order |G| of a group G,

e the order |g| of an element g € G,

e when a subset H is a subgroup of G, H < (.



We also stated the Two-Step Subgroup Test:

Let G be a group and H a nonempty subset of
G. Then H < G if ab€e H for any a,b € H and
if a1 € H for any a € H.



Example 4’:

Let G be an Abelian group and H the subset
of elements of order dividing 3, i.e.,

{x € G:z3=¢€}.

Show that H forms a subgroup of G.

Let a,b be in H.
Closure: (ab)3 = a3b3 = e (since G is Abelian).

Inverses: Show (a—1)3 =e¢. Since a3 =,

(a3 3= 3 e=e



Question: Do the elements of order exactly
equal to 3 form a subgroup?

Example:
{e,F} and {e, R, R?, R3} are subgroups of Dy,.



Example:

Let A, B be two matrices in GL(2,R):
(-1 0
=(31)
_( 0 1
=(50)

A and B generate the subgroup (A, B).

and

It suffices to check for identity and inverses.
We then have closure automatically since (A, B)
contains any sequence of products of A and B.
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(From Chapter 3, page 62)
Theorem 3.3: Finite Subgroup Test

Let H be a nonempty finite subset of a group
G. Then H is a subgroup of G if H is closed
under the operation of G.

Proof:

It suffices to show that H contains inverses.
Choose any a in G. If a = e, then it is its own
inverse. If a # e, then consider the sequence
a,a?,.... This sequence is contained in H by
the closure property.
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By the Pigeonhole Principle, since H is finite,
there are distinct i,j such that a* = a/. Sup-
pose i > j. Then a7 is in the sequence and
must equal e because

a’ = aj-ai_j = aj.
We have that aat 7 1 =g 7 = ¢, so

a1l =qg71

Then a = al # e implies i —j > 1, so
al=qa7"1ecH.
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Definition:
For any a € G, let (a) denote the set
{a™ :n € Z}.

Theorem:
Let G be a group and a any element in G.

Then (a) is a subgroup of G.
Proof.

For any n,m, a"a™ = a»tT™ . For any a”,
a” " is in {(a) as well.
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Definition:

We refer to (a) as the cyclic subgroup gen-
erated by a. In the case that G = (a), we say
that G is cyclic (or G is a cyclic group), and
that a is a generator of G (or G is generated

by a).

Note that since
dlal = o't = I T = @dd’,

every cyclic group is Abelian.
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Example 7:
In U(10), (3) = {3,9,7,1}, that is, U(10) is
generated by 3.

32 =9, 33=7 (mod 10), 3* =1 (mod 10).

Example 8:
In Z/107Z (under addition mod 10),
(2) = {2,4,6,8,0} is a subgroup.
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Reading Assignment:

Chapter O0: pages 14—17 on mathematical in-
duction and 20—22 on functions.

All of Chapter 3.

Chapter 4: Properties of Cyclic Groups, pages
73—78.
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Homework Assignment 2:

Chapter 2: 2, 5, 7, 14, 15, 30

Chapter 3: 1, 4, 10, 15, 16, 19

Chapter 4: 1, 2
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