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Review from Lecture 4:

The Pigeonhole Principle
Mathematical induction, (ab)™ = a™b"
Finite Subgroup Test

We defined the cyclic subgroup generated by
a € G to be

(a) ={a" :n € Z}.



We said that G is cyclic if G = (a).

We previewed the concept of isomorphism by
looking at D4 in three different ways: geo-

metric group, permutation group, and matrix
group.



(From Chapter 3, page 64.)

Definition:
We say two elements a,b of a group commute
if ab = ba.

Note: all elements of an Abelian group com-
mute.

Definition: Center of a Group

The center Z(G) of a group G is the subset
of elements of G that commute with every el-
ement of G. We can express this formally as

Z(G) ={a € G :ax = xa, for all x € G}.



Theorem 3.5: The center is a subgroup.

Proof:

Identity: e € Z(G) since the identity commutes
with all elements.

Closure: suppose a,b e Z(G). We have

(ab)xr = a(bx) = a(xb) = (ax)b = (xa)b = z(ab).

Inverses: given ax = xa, we can multiply on
the left and right by o~ 1 to get

which yields

So a~1 commutes with z.



Definition: The centralizer of a in G

Let a be a fixed element of G.

The centralizer of a in G, which we denote
C(a) (or sometimes Cq(G)) is the set of ele-
ments of G that commute with a.

We can write this formally as

C(a) ={g € G:ga=ag}.

Note that C(a) contains Z(G).



Example 12:

Consider D4, where R, denotes rotation by n
degrees, H denotes reflection about the hori-
zontal axis, V denotes reflection about the ver-
tical axis.

(Notation: Rg=¢, Rgo= R, and V = F.)
C(Rg) = D4 = C(R130)-

C(Rgo) = {Ro, Roo, R180, R270} = C(R270).
C(H) = {Ro, H, R180,V} = C(V).

Since R = Rgp and F = V generate Dy, it

suffices to test relationships on these two gen-
erators.



Chapter 4: Cyclic Groups
(From Chapter 4, page 73)
Consider a cyclic group G = {(a).

We say that G is generated by a or that a
generates G.

Example 1:
The set of integers Z under addition is gener-
ated by 1. The additive inverse of 1 is —1.

Whenn >0, we haven=14---4+1 (n times).
When n< 0, n=(-1)4+---4+(—1) (n times).



Example 3:
7,/87 under addition is cyclic generated by ei-
ther 1, 3, 5, or 7. Let's check that 7 is a

generator.

1.7 7 (mod 8)

2.7 = 6 (mod38)

3-7 = 5 (mod 8)
and so on, because 7 = -1 (mod 8).

Nonexample 1:
Z/8Z under addition is not generated by 4,
since (4) = {4,0}.



Nonexample 2:
The dihedral group Dg4 is not cyclic because all
elements are either rotations or reflections and
have orders 1, 2, or 4. A generator would have
to have order 8.

Nonexample 3:
U(8) = {1,3,5,7} is not cyclic since 3, 5, 7
have order 2:

OV
N
]

1 (mod 8)
1 (mod 8)
7° = 1 (mod 8)

ol
N
Il

A generator would have to have order 4.
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Theorem 4.1: Criterion for a = o/

Let G be a group, and let a belong to G. If
a has infinite order, then all distinct powers of
a are distinct group elements. If a has finite
order, say, n, then

(a) = {e, a, a’, ..., an_l}

and a* = o if and only if n divides i — j.

Proof:

If ¢ has infinite order, then there is no non-
zero n such that a” = e. Since a* = &’ implies
that a7 = e, it follows that i — j = 0, so
1 = j. That proves the first statement of the
theorem.
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Now assume that a has order n, i.e., |a| = n.
We will prove that (a) = {e,a,a?,...,a" 1}
Certainly these n elements are distinct. If o' =
ol with 0 < j <i<mn-—1, then a7 = e with

O<i1—73<n-—1. But by the definition of the
order of an element, : — 5 = 0.

Now suppose that a” is an arbitrary element of
(a). We wish to show that a¥isin {e,a,...,a” 1}.
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By the division algorithm, there exist integers
q,r such that Kk =gn +r with 0 <r <n. Then

af =a"TT =" . " = (@™ -a" =el-a" =ad.

This proves that (a) = {e,a,...,a™ 1}.

13



Next we prove that o' = o7 if and only if (iff)
n divides 7 — j.

Suppose a* = a?. We show n|(i — j).

Apply the division algorithm again to obtain ¢, r
integers for which i—j = gn—+r, with 0 < r < n.
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Since a' = a?, we know a'~J = e and
e=a"J =a""T" = (@)?-a" =d".

Since the order of a isn and 0 < r < n, we
have »r = 0, so n divides 7 — j.

Conversely, if n|(i — j), say, i —j = ¢gn, then
a'") = a9 = e.

T his proves the last statement.
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