
MA441: Algebraic Structures I

Lecture 7

24 September 2003

1



Review from Lecture 6:

Theorem 4.1: Criterion for ai = aj

Let G be a group, and let a belong to G. If

a has infinite order, then all distinct powers of

a are distinct group elements. If a has finite

order, say, n, then

〈a〉 = {e, a, a2, . . . , an−1}

and ai = aj if and only if n divides i − j.
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Corollary 1:

For any group element a,

|a| = |〈a〉|.

Corollary 2:

Let G be a group and let a ∈ G have order n.

If ak = e, then n divides k.
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Theorem 4.2:

Let a be an element of order n in a group and

let k be a positive integer. Then

〈ak〉 = 〈agcd(n,k)〉

and

|ak| =
n

gcd(n, k)
.

4



Corollary 1:

Let |a| = n. Then 〈ai〉 = 〈aj〉 iff

gcd(n, i) = gcd(n, j).

Proof:

By Theorem 4.2, we have that

〈ai〉 = 〈agcd(n,i)〉 and 〈aj〉 = 〈agcd(n,j)〉.

We need to prove 〈agcd(n,i)〉 = 〈agcd(n,j)〉 iff

gcd(n, i) = gcd(n, j).
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Clearly gcd(n, i) = gcd(n, j) implies

〈agcd(n,i)〉 = 〈agcd(n,j)〉.

Suppose that 〈agcd(n,i)〉 = 〈agcd(n,j)〉.

This means |〈agcd(n,i)〉| = |〈agcd(n,j)〉|, so

|agcd(n,i)| = |agcd(n,j)|.

By the second part of Theorem 4.2, on the

LHS |agcd(n,i)| = n/gcd(n, i) and on the RHS

|agcd(n,j)| = n/gcd(n, j). Therefore,

n

gcd(n, i)
=

n

gcd(n, j)
,

so gcd(n, i) = gcd(n, j).
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Here are two special cases of Corollary 1.

Corollary 2:

Let G = 〈a〉 be a cyclic group of order n. Then

G = 〈ak〉 iff gcd(n, k) = 1.

Corollary 3:

An integer k in Z/nZ is a generator of Z/nZ iff

gcd(n, k) = 1.

(Compare this to exercises 1, 2 of Chapter 4.)
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Classification of Subgroups of Cyclic Groups

(From Chapter 4, page 78)

Theorem 4.3: Fundamental Theorem of

Cyclic Groups

Every subgroup of a cyclic group is cyclic. More-

over, if |〈a〉| = n, then the order of any sub-

group of 〈a〉 is a divisor of n; and, for each

positive divisor k of n, the group 〈a〉 has ex-

actly one subgroup of order k, namely, 〈an/k〉.
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Example:

What are the subgroups of a cyclic group 〈a〉
of order 30?

Consider the divisors of 30: {1,2,3,5,6,10,15,30}.

Corollary: Subgroups of Z/nZ

For each positive divisor k of n, the set 〈n/k〉 is

the unique subgroup of Z/nZ of order k; more-

over, these are the only subgroups of Z/nZ.
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Proof of Theorem 4.3:

Claim 1:

Every subgroup of a cyclic group is cyclic.

Let G = 〈a〉 and suppose H ≤ G. We must

show H is cyclic.

If H is the trivial subgroup, i.e., H = {e}, then

it is cyclic. So assume H is nontrivial, i.e.,

H 6= {e}.

H contains an element at for some t > 0.

(Why?)
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Since H ≤ G = 〈a〉, there is some power of a

in H, say, at. If t < 0, then the inverse of at,

a−t is in H and −t > 0.
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Let m be the least positive integer such that

am ∈ H.

By closure, 〈am〉 ⊆ H.

Because we have chosen m to be the least

power of a in H, by using the division algo-

rithm, we can show that 〈am〉 ⊇ H.

(Why?)
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Let b be any element of H. Since H ≤ 〈a〉,
b = ak for some k. Since m is least, m ≤ k.

Apply the division algorithm to k and m to di-

vide k by m and get a quotient q with remainder

r such that 0 ≤ r < m:

k = mq + r,

hence

ak = amq · ar.

How can we write ar in terms of ak and am?
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Compute ar = ak · (am)−q. (r = k − mq)

What can we conclude about r?
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Since 0 ≤ r < m, yet m is the least positive

integer such that am ∈ H, we must have

r = 0.

What does this tell us about our arbitrary

b ∈ H?

What about the relationship between

H and 〈am〉?
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Since b = ak, r = 0, therefore k = mq and

b = ak = (am)q,

so b ∈ 〈am〉.

Then H ⊆ 〈am〉, which gives us

H = 〈am〉.
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